Shiga toxin-producing (STEC) are a cause of severe human illness and are frequently associated with haemolytic uraemic syndrome (HUS) in children. It remains difficult to identify virulence factors for STEC that absolutely predict the potential to cause human disease. In addition to the Shiga-toxin ( genes), many additional factors have been reported, such as intimin ( gene), which is clearly an aggravating factor for developing HUS. Current STEC detection methods classically rely on real-time PCR (qPCR) to detect the presence of the key virulence markers ( and ). Although qPCR gives an insight into the presence of these virulence markers, it is not appropriate for confirming their presence in the same strain. Therefore, isolation steps are necessary to confirm STEC viability and characterize STEC genomes. While STEC isolation is laborious and time-consuming, metagenomics has the potential to accelerate the STEC characterization process in an isolation-free manner. Recently, short-read sequencing metagenomics have been applied for this purpose, but assembly quality and contiguity suffer from the high proportion of mobile genetic elements occurring in STEC strains. To circumvent this problem, we used long-read sequencing metagenomics for identifying -positive STEC strains using raw cow's milk as a causative matrix for STEC food-borne outbreaks. By comparing enrichment conditions, optimizing library preparation for MinION sequencing and generating an easy-to-use STEC characterization pipeline, the direct identification of an -positive STEC strain was successful after enrichment of artificially contaminated raw cow's milk samples at a contamination level as low as 5 c.f.u. ml. Our newly developed method combines optimized enrichment conditions of STEC in raw milk in combination with a complete STEC analysis pipeline from long-read sequencing metagenomics data. This study shows the potential of the innovative methodology for characterizing STEC strains from complex matrices. Further developments will nonetheless be necessary for this method to be applied in STEC surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836091 | PMC |
http://dx.doi.org/10.1099/mgen.0.000911 | DOI Listing |
Foodborne Pathog Dis
December 2024
Department of Pediatric Nephrology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.
View Article and Find Full Text PDFEpidemiol Infect
December 2024
UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) is a group of bacteria that causes gastrointestinal illness and occasionally causes large foodborne outbreaks. It represents a major public health concern due to its ability to cause severe illness which can sometimes be fatal. This study was undertaken as part of a rapid investigation into a national foodborne outbreak of STEC O145.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia.
Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households.
View Article and Find Full Text PDFClin Mol Hepatol
December 2024
Department of Medicine, Queen Mary Hospital, The University of Hong Kong.
Background: Plasma pregenomic hepatitis B virus RNA (pgRNA) is a novel biomarker in chronic hepatitis B infection (CHB). We aimed to describe the longitudinal profile of pgRNA and factors influencing its levels in CHB patients on nucleoside analogue (NUC).
Methods: Serial plasma samples from 1354 CHB patients started on first-line NUC were evaluated.
Pediatr Int
December 2024
Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
Background: Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a life-threatening condition complicated by acute kidney injury, acute respiratory distress syndrome, and central nervous system disorders. The early identification of high-risk patients is required to facilitate timely and appropriate treatment.
Methods: The medical records of patients with STEC-HUS treated at 11 hospitals in Hokkaido, Japan, were reviewed retrospectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!