Detecting and treating the protean manifestations of diabetic autonomic neuropathy.

Diabetes Obes Metab

Southside Endocrinology, Birmingham, Alabama, USA.

Published: May 2023

The manifestations of diabetic autonomic neuropathy (DAN) are protean and clinically involve multiple systems, including the cardiovascular system, the gastrointestinal system, the genitourinary system as well as the sweat glands (sudomotor dysfunction) and the gallbladder. In addition, cardiac autonomic neuropathy (CAN) is associated with a correctible inability to appreciate and correct hypoglycaemia. While not a clinical problem, pupillary involvement should be the clue and the catalyst to investigate for other manifestations of DAN. This review outlines a practical approach to detecting and investigating the manifestations of DAN. Of particular importance is early detection of cardiovascular involvement where prompt therapy through glycaemic control can decrease the severity of CAN and decelerate the frequency and severity of retinopathy and nephropathy in addition to decreasing cardiovascular events and mortality. CAN also plays a role in accelerating other diabetic complications such as acute ischaemic stroke, heart failure, medial artery calcinosis, foot ulcers, peripheral artery disease and Charcot joints. Many therapies of DAN are available, which should not only decrease morbidity and mortality from DAN, but also improve the patient's quality of life. However, the therapies available are largely symptomatic.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.15004DOI Listing

Publication Analysis

Top Keywords

autonomic neuropathy
12
manifestations diabetic
8
diabetic autonomic
8
manifestations dan
8
dan
5
detecting treating
4
treating protean
4
manifestations
4
protean manifestations
4
neuropathy manifestations
4

Similar Publications

Blended phenotype of TECPR2-associated hereditary sensory-autonomic neuropathy and Temple syndrome.

Ann Clin Transl Neurol

January 2025

Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Uniparental isodisomy (UPiD) can cause mixed phenotypes of imprinting disorders and autosomal-recessive diseases. We present the case of a 3-year-old male with a blended phenotype of TECPR2-related hereditary sensory and autonomic neuropathy (HSAN9) and Temple syndrome (TS14) due to maternal UPiD of chromosome 14, which includes a loss-of-function founder variant in the TECPR2 gene [NM_014844.5: c.

View Article and Find Full Text PDF

The impact of obesity on heart rate variability (HRV) and ventricular repolarization, both vital indicators of cardiovascular health, is the focus of this review. Obesity, measured by BMI, waist circumference, and waist-to-hip ratio, significantly increases cardiovascular disease (CVD) risk due to structural and autonomic heart changes. Findings show that obese individuals exhibit prolonged QT and Tpeak-to-Tend (Tpe) intervals, suggesting delayed ventricular recovery and greater arrhythmia risk.

View Article and Find Full Text PDF

Background And Aims: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.

Methods: Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables.

View Article and Find Full Text PDF

Background: Cardiovascular autonomic neuropathy (CAN) is a severe complication of type 2 diabetes. Significant sex-related differences have been observed in type 2 diabetes consequences such as mortality. However, the effect of sex on the association between CAN and mortality in patients with type 2 diabetes is currently unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!