COVID-19 Predictive Models Based on Grammatical Evolution.

SN Comput Sci

Department of Informatics and Telecommunications, University of Ioannina, Arta, Greece.

Published: February 2023

A feature construction method that incorporates a grammatical guided procedure is presented here to predict the monthly mortality rate of the COVID-19 pandemic. Three distinct use cases were obtained from publicly available data and three corresponding datasets were created for that purpose. The proposed method is based on constructing artificial features from the original ones. After the artificial features are generated, the original data set is modified based on these features and a machine learning model, such as an artificial neural network, is applied to the modified data. From the comparative experiments done, it was clear that feature construction has an advantage over other machine learning methods for predicting pandemic elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894520PMC
http://dx.doi.org/10.1007/s42979-022-01632-wDOI Listing

Publication Analysis

Top Keywords

feature construction
8
artificial features
8
machine learning
8
covid-19 predictive
4
predictive models
4
models based
4
based grammatical
4
grammatical evolution
4
evolution feature
4
construction method
4

Similar Publications

Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.

View Article and Find Full Text PDF

Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).

Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.

View Article and Find Full Text PDF

Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model.

Front Immunol

December 2024

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.

Objective: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast cancer (BC). The objective is to provide guidance for developing scientifically individualized treatment plans, assessing prognosis, and planning preoperative interventions.

Methods: A retrospective analysis was conducted on clinical and imaging data from 270 patients with BC confirmed by surgical pathology at the Third Hospital of Shanxi Medical University between November 2022 and April 2024.

View Article and Find Full Text PDF

Background: Frailty in older adults is linked to increased risks and lower quality of life. Pre-frailty, a condition preceding frailty, is intervenable, but its determinants and assessment are challenging. This study aims to develop and validate an explainable machine learning model for pre-frailty risk assessment among community-dwelling older adults.

View Article and Find Full Text PDF

Background: Wireless capsule endoscopy (WCE) has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology. However, the complexity of the digestive tract structure, and the diversity of lesion types, results in different sites and types of lesions distinctly appearing in the images, posing a challenge for the accurate identification of digestive tract diseases.

Aim: To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions, thereby improving the diagnostic efficiency of doctors, and creating significant clinical application value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!