Background: Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) has proven to be a powerful technique to help subjects to gauge and enhance emotional control. Traditionally, rtfMRI-nf has focused on emotional regulation through self-regulation of amygdala. Recently, rtfMRI studies have observed that regulation of a target brain region is accompanied by connectivity changes beyond the target region. Therefore, the aim of present study is to investigate the use of connectivity between amygdala and prefrontal regions as the target of neurofeedback training in healthy individuals and subjects with a life-time history of major depressive disorder (MDD) performing an emotion regulation task.
Method: Ten remitted MDD subjects and twelve healthy controls (HC) performed an emotion regulation task in 4 runs of rtfMRI-nf training followed by one transfer run without neurofeedback conducted in a single session. The functional connectivity between amygdala and prefrontal cortex was presented as a feedback bar concurrent with the emotion regulation task. Participants' emotional state was measured by the Positive and Negative Affect Schedule (PANAS) prior to and following the rtfMRI-nf. Psychological assessments were used to determine subjects' history of depression.
Results: Participants with a history of MDD showed a trend of decreasing functional connectivity across the four rtfMRI-nf runs, and there was a marginally significant interaction between the MDD history and number of training runs. The HC group showed a significant increase of frontal cortex activation between the second and third neurofeedback runs. Comparing PANAS scores before and after connectivity-based rtfMRI-nf, we observed a significant decrease in negative PANAS score in the whole group overall, and a significant decrease in positive PANAS score in the MDD group alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900962 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!