Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease. Foldback priming at naturally occurring inverted repeats is one mechanism proposed for the generation of inverted duplications. However, the initiating lesion for these events and the mechanism by which they form has not been fully elucidated. Here, we show that a DNA double-strand break (DSB) induced near natural short, inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity acts non-redundantly with Rad1 nuclease to remove heterologous tails formed during foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. Stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences and requires Rad51.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900772PMC
http://dx.doi.org/10.1101/2023.01.24.525421DOI Listing

Publication Analysis

Top Keywords

inverted duplications
12
inverted duplication
8
dna polymerase
8
inverted repeats
8
generation inverted
8
inverted
7
double-strand breaks
4
breaks induce
4
induce inverted
4
chromosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!