Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900749PMC
http://dx.doi.org/10.1101/2023.01.23.523684DOI Listing

Publication Analysis

Top Keywords

dilated cardiomyopathy
8
precision therapeutics
8
dcm phenotype
8
dilated myocardial
8
myocardial remodeling
8
cardiac fibroblasts
8
contractile function
8
dcm
6
cardiac
5
correcting dilated
4

Similar Publications

Filamin C (FLNC), recently identified as a causative gene of cardiomyopathy, is widely expressed in cardiomyocytes and is involved in signal transduction between the sarcomere and the plasma membrane. In general, the FLNC truncating variant causes severe dilated cardiomyopathy. A 70-year-old female was referred to our hospital with advanced conduction defects and underwent pacemaker implantation.

View Article and Find Full Text PDF

In one of the earliest reports from China during COVID-19, it was noted that over 20% of patients hospitalized with the disease had significant elevations of troponin, a marker of myocardial tissue damage, that put them at a higher risk. In a hypothesis-independent whole exome sequencing (WES) study in hospitalized COVID-19 patients of diverse ancestry, we observed putative enrichment in pathogenic variants in genes known to be involved in the pathogenesis of cardiomyopathy. This observation led us to hypothesize that the observed high morbidity and mortality in these patients might be due to the presence of rare genetic factors that had previously been silent but became relevant as a consequence of the severe stress inflicted by an infection with SARS-CoV-2.

View Article and Find Full Text PDF

Objective: Cardiac computed tomography (CT) helps screen coronary artery stenosis in cases with dilated cardiomyopathy (DCM). Extracellular volume fraction (ECV) analysis has recently been eligible for CT.

Method: We evaluated the impact of ECV on the CT to predict the prognosis in DCM patients with heart failure with reduced ejection fraction (HFrEF).

View Article and Find Full Text PDF

Introduction: Pericardial effusion (PE) is an abnormal accumulation of fluid in the pericardial space, which, if severe, is associated with high mortality. The causes are diverse, including infective and non-infective. Few studies have looked at the spectrum of severity and causes in Northern Nigeria.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac resynchronization therapy (CRT) improves functional mitral regurgitation (FMR) by coordinating heart muscle segments, especially between papillary muscles, beyond just boosting left ventricular (LV) performance.
  • Eighteen patients with dilated cardiomyopathy underwent tests to measure heart function, and biventricular pacing showed a significant reduction in mitral regurgitation despite some patients showing no change in LV pressure.
  • The study concludes that CRT effectively lowers FMR independently of LV systolic function improvements, highlighting the importance of understanding its mechanisms for better treatment outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!