Motivation: With the development in single-cell multi-omics sequencing technology and data integration algorithms, we have entered the single-cell multi-omics era. Current multi-omics analysis algorithms failed to systematically dissect the heterogeneity within the datasets when inferring cis-regulatory events. Thus, there is a need for cis-regulatory element inferring algorithms that considers the cellular heterogeneity.
Results: Here, we propose scGREAT, a single-cell multi-omics regulatory state analysis Python package with a rapid graph-based correlation measurement . The graph-based correlation method assigns each cell a local index, pinpointing specific cell groups of certain regulatory states. Such single-cell resolved regulatory state information enables the heterogeneity analysis equipped in the package. Applying scGREAT to the 10X Multiome PBMC dataset, we demonstrated how it could help subcluster cell types, infer regulation-based pseudo-time trajectory, discover feature modules, and find cluster-specific regulatory gene-peak pairs. Besides, we showed that global L index, which is the average of all local L values, is a better replacement for Pearson's r in ruling out confounding regulatory relationships that are not of research interests.
Availability: https://github.com/ChaozhongLiu/scGREAT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900895 | PMC |
http://dx.doi.org/10.1101/2023.01.27.525916 | DOI Listing |
Sci China Life Sci
December 2024
Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.
View Article and Find Full Text PDFNature
January 2025
Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.
View Article and Find Full Text PDFNeuron
January 2025
Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. Electronic address:
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
Spinal cord injury (SCI) impairs the central nervous system and induces the myelin-sheath-deterioration because of reactive oxygen species (ROS), further hindering the recovery of function. Herein, the simultaneously emergency treatment and dynamic luminescence severity assessment (SETLSA) strategy is designed for SCI based on cerium (Ce)-doped upconversion antioxidant nanoenzymes (Ce@UCNP-BCH). Ce@UCNP-BCH can not only efficiently eliminate the SCI localized ROS, but dynamically monitor the oxidative state in the SCI repair process using a ratiometric luminescence signal.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
RIKEN Center for Biosystems Dynamics Research, Suita‐shi, Osaka, Japan
Background: In aging societies, neurodegenerative diseases, such as Alzheimer's disease, are receiving attention. These diseases are primary targets for preemptive medicine, emphasizing the importance of early detection and preventive treatment before the onset of severe, treatment‐resistant damages. However, there is a lack of comprehensive investigation of lesions and molecular targets in the entire organ, whereas spatial identification of early‐stage lesions is potentially overlooked at the single‐cell level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!