Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Preclinical studies that identify synergistic combinations enhance therapeutic efficacy to target intrinsic resistance, however, methods to study acquired resistance in cell culture are lacking. Here, we describe a novel in situ resistance assay (ISRA), performed in a 96-well culture format, that models acquired resistance to RTK/RAS pathway targeted therapies. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show acquired resistance can be reliably modeled across cell lines using objectively defined osimertinib doses. Similar to patient populations, isolated osimertinib-resistant populations showed resistance via enhanced activation of multiple parallel RTKs so that individual RTK inhibitors did not re-sensitize cells to osimertinib. In contrast, inhibition of proximal RTK signaling using the SHP2 inhibitor RMC-4550 both re-sensitized resistant populations to osimertinib and prevented the development of osimertinib resistance as a primary therapy. Similar, objectively defined drug doses were used to model resistance to additional RTK/RAS pathway targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901014 | PMC |
http://dx.doi.org/10.1101/2023.01.27.525958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!