LY6E is an antiviral protein that inhibits coronavirus entry. Its expression in immune cells allows mice to control murine coronavirus infection. However, it is not known which immune cell subsets mediate this control or whether LY6E protects mice from SARS-CoV-2. In this study, we used tissue-specific Cre recombinase expression to ablate in distinct immune compartments or in all epiblast-derived cells, and bone marrow chimeras to target Ly6e in a subset of radioresistant cells. Mice lacking in -expressing cells and radioresistant -expressing cells were more susceptible to lethal murine coronavirus infection. Mice lacking globally developed clinical disease when challenged with the Gamma (P.1) variant of SARS-CoV-2. By contrast, wildtype mice and mice lacking type I and type III interferon signaling had no clinical symptoms after SARS-CoV-2 infection. Transcriptomic profiling of lungs from SARS-CoV-2-infected wildtype and knockout mice revealed a striking reduction of secretory cell-associated genes in infected knockout mice, including , an airway mucin-encoding gene that may protect against SARS-CoV-2-inflicted respiratory disease. Collectively, our study reveals distinct cellular compartments in which Ly6e confers cell intrinsic antiviral effects, thereby conferring resistance to disease caused by murine coronavirus and SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900800PMC
http://dx.doi.org/10.1101/2023.01.25.525551DOI Listing

Publication Analysis

Top Keywords

murine coronavirus
16
mice lacking
12
mice
9
ly6e protects
8
protects mice
8
coronavirus sars-cov-2
8
coronavirus infection
8
-expressing cells
8
knockout mice
8
ly6e
5

Similar Publications

Hepatitis E virus (HEV) is a zoonotic virus that infects humans when virus-containing pork products are consumed. This study aimed to explore MNV (murine norovirus) and HEV inactivation during cold smoking and ripening/fermentation treatments used for salami-like sausages (mettwurst). MNV inactivation was monitored in culture medium solution and in sausage while being subjected to a salami-like sausage manufacturing process.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.

View Article and Find Full Text PDF

Background: The pandemic emergent disease multisystem inflammatory syndrome in children (MIS-C) following coronavirus disease-19 infection can mimic endemic typhus. We aimed to use artificial intelligence (AI) to develop a clinical decision support system that accurately distinguishes MIS-C versus Endemic Typhus (MET).

Methods: Demographic, clinical, and laboratory features rapidly available following presentation were extracted for 133 patients with MIS-C and 87 patients hospitalized due to typhus.

View Article and Find Full Text PDF

Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!