Fast model-free standardization and integration of single-cell transcriptomics data.

Res Sq

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.

Published: January 2023

Single-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization and Integration). MASI first identifies putative cell-type markers from reference data through an ensemble approach. Then, it converts gene expression matrix to cell-type score matrix with the identified putative cell-type markers for the purpose of cell-type annotation and data integration. Because of integration through cell-type markers instead of model inference, MASI can annotate approximately one million cells on a personal laptop, which provides a cheap computational alternative for the single-cell community. We benchmark MASI with other well-established methods and demonstrate that MASI outperforms other methods based on speed. Its performance for both tasks of data integration and cell-type annotation are comparable or even superior to these existing methods. To harness knowledge from single-cell atlases, we demonstrate three case studies that cover integration across biological conditions, surveyed participants, and research groups, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901035PMC
http://dx.doi.org/10.21203/rs.3.rs-2485985/v1DOI Listing

Publication Analysis

Top Keywords

cell-type annotation
16
single-cell transcriptomics
12
data integration
12
cell-type markers
12
fast model-free
8
integration
8
standardization integration
8
transcriptomics datasets
8
cell-type
8
annotation data
8

Similar Publications

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.

View Article and Find Full Text PDF

The current mortality rates for breast cancer underscore the need for better prognostic tools; moreover, LIM and calponin homology domain 1 (LIMCH1), which is a protein with dual roles in cancer, is a promising candidate for investigation. This study employed an integrative approach combining bioinformatics analysis of The Cancer Genome Atlas (TCGA) cohort and clinical immunohistochemistry (IHC) cohort data. We analysed LIMCH1 expression patterns, its associations with clinicopathological features and prognosis, and its impact on the tumour immune microenvironment (TIME).

View Article and Find Full Text PDF

Due to considerable tumour heterogeneity, stomach adenocarcinoma (STAD) has a poor prognosis and varies in response to treatment, making it one of the main causes of cancer-related mortality globally. Recent data point to a significant role for metabolic reprogramming, namely dysregulated lactic acid metabolism, in the evolution of STAD and treatment resistance. This study used a series of artificial intelligence-related approaches to identify IGFBP7, a Schlafen family member, as a critical factor in determining the response to immunotherapy and lactic acid metabolism in STAD patients.

View Article and Find Full Text PDF

FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.

eNeuro

January 2025

Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.

To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a histologically heterogeneous disease with variable clinical outcome. The role the tumour microenvironment (TME) plays in determining tumour progression is complex and not fully understood. To improve our understanding, it is critical that the TME is studied systematically within clinically annotated patient cohorts with long-term follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!