Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anemia is a critical complication in hemodialysis patients, but the response to erythropoietin-stimulating agents (ESA) treatment varies from patient to patient and is not linear across different time points. The aim of this study was to develop deep learning algorithms for individualized anemia management. We retrospectively collected 36,677 data points from 623 hemodialysis patients, including clinical data, laboratory values, hemoglobin levels, and previous ESA doses. To reduce the computational complexity associated with recurrent neural networks (RNN) in processing time-series data, we developed neural networks based on multi-head self-attention mechanisms in an efficient and effective hemoglobin prediction model. Our proposed model achieved a more accurate hemoglobin prediction than the state-of-the-art RNN model, as shown by the smaller mean absolute error (MAE) of hemoglobin (0.451 vs. 0.593 g/dL, p = 0.014). In ESA (including darbepoetin and epoetin) dose recommendation, the simulation results by our model revealed a higher rate of achieved hemoglobin targets (physician prescription vs. model: 86.3 % vs. 92.7 %, p < 0.001), a lower rate of hemoglobin levels below 10 g/dL (13.7 % vs. 7.3 %, p < 0.001) and smaller change in hemoglobin levels (0.6 g/dL vs. 0.4 g/dL, p < 0.001) in all patients. Our model holds great potential for individualized anemia management as a computerized clinical decision support system for hemodialysis patients. Further external validation with other datasets and prospective clinical utility studies are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898283 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e12613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!