With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, "green" electrically conductive Ag nanowire (AgNW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of AgNW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2020.02.020 | DOI Listing |
J Am Chem Soc
January 2024
Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala SE-75121, Sweden.
Covalent organic frameworks (COFs) are usually synthesized under solvothermal conditions that require the use of toxic organic solvents, high reaction temperatures, and complicated procedures. Additionally, their insolubility and infusibility present substantial challenges in the processing of COFs. Herein, we report a facile, green approach for the synthesis of imine-linked COFs in an aqueous solution at room temperature.
View Article and Find Full Text PDFSmall
March 2024
Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage.
View Article and Find Full Text PDFCarbohydr Polym
July 2023
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Lignin-containing cellulose nanopapers are emerging multifunctional materials in the fields of coatings, films, and packaging. However, the forming mechanism and properties of nanopapers with various lignin content have not been thoroughly studied. In this work, a mechanically strong nanopaper was fabricated based on lignin-containing cellulose micro- and nano-hybrid fibrils (LCNFs).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
April 2023
Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, PG, Karnataka, 580 003, India.
The advances in nanotechnology have shown enormous impacts in environmental technology as a potent weapon for degradation of toxic organic pollutants and detoxification of heavy metals. It is either by in-situ or ex-situ adaptive strategies. Mycoremediation of environmental pollutants has been a success story of the past decade, by employing the wide arsenal of biological capabilities of fungi.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
AlmaScience Colab, Madan Parque, 2829-516Caparica, Portugal.
The market for flexible, hybrid, and printed electronic systems, which can appear in everything from sensors and wearables to displays and lighting, is still uncertain. What is clear is that these systems are appearing every day, enabling devices and systems that can, in the near future, be crumpled up and tucked in our pockets. Within this context, cellulose-based modified nanopapers were developed to serve both as a physical support and a gate dielectric layer in field-effect transistors (FETs) that are fully recyclable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!