We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CH fragments (with x = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902455PMC
http://dx.doi.org/10.1038/s41598-023-28694-xDOI Listing

Publication Analysis

Top Keywords

hydrogen migration
8
cyclic hydrocarbons
8
ion momentum
8
migration inner-shell
4
inner-shell ionized
4
ionized halogenated
4
halogenated cyclic
4
hydrocarbons studied
4
studied fragmentation
4
fragmentation brominated
4

Similar Publications

To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.

View Article and Find Full Text PDF

Interface engineering and electronic modulation enable precise tuning of the electronic structure, thereby maximizing the efficacy of active sites and significantly enhancing the activity and stability of the electrocatalyst. Herein, a hybrid material composed of Ni-modified CoS nanoparticles ((Co, Ni)S) encapsulated within an N, S co-doped carbon matrix (SNC) and anchored onto S-doped carbonized wood fibers (SCWF) is synthesized using a straightforward simultaneous carbonization and sulfidation approach. Density functional theory (DFT) calculations reveal that the highly electronegative Ni element promotes electron cloud migration from Co to Ni, shifting the d-band center of Co closer to the Fermi level.

View Article and Find Full Text PDF

Synergistic design of dual S-scheme heterojunction CuO/NiAl-LDH@MIL-53(Fe) for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 PR China.

The development of heterojunctions is a proven strategy to augment the photocatalytic efficiency of materials. However, the enhancement in charge transfer facilitated by a single heterojunction is inherently constrained. To overcome these limitations, we synthesized a dual S-scheme heterojunction ternary composite photocatalyst, CuO/NiAl-LDH@MIL-53(Fe), designed for efficient visible-light-driven hydrogen (H) production.

View Article and Find Full Text PDF

Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.

View Article and Find Full Text PDF

Rapid Charge Transfer Endowed by Heteroatom Doped Z-Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution.

Small

January 2025

College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.

Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!