Role of vanadium ions substitution on spinel MnCoO towards enhanced electrocatalytic activity for hydrogen generation.

Sci Rep

Solar Energy Research Group, Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, TR10 9FE, UK.

Published: February 2023

Improving efficient electrocatalysts (ECs) for hydrogen generation through water splitting is of significant interest in tackling the upcoming energy crisis. Sustainable hydrogen generation is the primary prerequisite to realizing the future hydrogen economy. This work examines the electrocatalytic activity of hydrothermally prepared vanadium doped MnCo spinel oxide microspheres (MC), MnVCoO (V-MnCo MC, where x ≤ 0.4) in the HER (hydrogen evolution reaction) process. Magnetization measurements demonstrated a paramagnetic (at high temperatures) to a ferrimagnetic (at low temperatures) transition below the Curie temperature (Tc) in all the samples. The magnetization is found to intensify with the rising vanadium content of MCs. The optimized catalyst V-MnCo MCs (x = 0.3) outperformed other prepared ECs with a Tafel slope of 84 mV/dec, a low onset potential of 78.9 mV, and a low overpotential of 85.9 mV at a current density of 10 mA/cm, respectively. The significantly improved HER performance of hydrothermally synthesized V-MnCo MCs (x = 0.3) is principally attributable to many exposed active sites, accelerated electron transport at the EC/electrolyte interface, and remarkable electron spectroscopy for chemical analysis (ECSA) value was found ~ 11.4 cm. Moreover, the V-MnCo MCs (x = 0.3) electrode exhibited outstanding electrocatalytic stability after exposure to 1000 cyclic voltametric cycles and 36 h of chronoamperometric testing. Our results suggest a feasible route for developing earth-abundant transition metal oxide-based EC as a superior electrode for future water electrolysis applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902437PMC
http://dx.doi.org/10.1038/s41598-023-29081-2DOI Listing

Publication Analysis

Top Keywords

hydrogen generation
12
v-mnco mcs
12
mcs x = 03
12
electrocatalytic activity
8
hydrogen
5
role vanadium
4
vanadium ions
4
ions substitution
4
substitution spinel
4
spinel mncoo
4

Similar Publications

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Hydrolysis Reactions of p-Nitrophenyl Trifluoroacetate and S-Ethyl Trifluorothioacetate.

Molecules

January 2025

Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL 32224, USA.

The formation of water structures can provide significant benefits in organic reactions, stabilizing charge and lowering activation energies. Hydrolysis reactions will frequently rely on water networks to accomplish these goals. Here, we used computational chemistry and experimental kinetics to investigate a model thioester molecule S-ethyl trifluorothioacetate, and extended work on a previously characterized ester p-nitrophenyl trifluoroacetate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!