ACS Appl Bio Mater
Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.
Published: February 2023
The rapid emergence of superbugs which are resistant to existing antibiotics is becoming a huge global threat to public health, which demands the discovery of next-generation antibacterial agents for combating superbugs. Herein, we report the design of a two-dimensional (2D) reduced graphene oxide (r-GO) and one-dimensional (1D) WO nanowire-based photothermal-photocatalytic heterostructure for combating multiantibiotic-resistant DT104, carbapenem-resistant , and methicillin-resistant superbugs. In the presence of near-infrared (NIR) light, due to the generation of electrons and holes, the WO-based heterostructure generates reactive oxygen species by photocatalytic reaction from water and oxygen, which kills superbugs. To enhance the photocatalytic superbug killing efficiency, r-GO has been used for suppressing the recombination of the photoinduced electron-hole pairs. Reported data show that NIR light-driven synergistic photocatalytic-photothermal processes can be used for 100% degradation of methylene blue using a heterostructure-based catalyst, and the photodegradation rate for the heterostructure is much better than the literature data for different types of WO/GO-based nanocomposites. Experimentally, time-dependent antibacterial efficiency data reveals that the heterostructure can destroy 100% superbugs within 30 min of light exposure via a synergistic photothermal and photocatalytic mechanism, whereas the WO nanowire can kill around 35% superbugs only via photocatalytic action only and r-GO can kill 25% superbugs via photothermal action even after 30 min of exposure to light. Systematic time-dependent microscopy and spectroscopy studies reveal that the excellent antisuperbug activities for heterostructures are due to membrane damage, ATP, and DNA/RNA breakage. For possible real-life applications, sun light-based superbug inactivation shows 100% inactivation possible within 250 min of light exposure using 12 mg/mL heterostructures. The reported sun light-driven killing of superbugs provides a simple and versatile platform to combat drug-resistant superbugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00057 | DOI Listing |
Front Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFCureus
December 2024
Department of Pharmacy Practice, Ratnam Institute of Pharmacy, Nellore, IND.
Introduction The success of surgical procedures is becoming more threatened by the advent of multi-drug resistant (MDR) bacterial strains, sometimes known as superbugs. These resistant microorganisms frequently cause post-surgical infections, which raise morbidity, death, and medical expenses. With an emphasis on resistant strains, this seeks to create an antibiogram and a thorough microbiological profile of surgical infections in order to help choose the most effective antimicrobial therapy.
View Article and Find Full Text PDFACS Nano
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.