A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DGCL: Distance-wise and Graph Contrastive Learning for medication recommendation. | LitMetric

DGCL: Distance-wise and Graph Contrastive Learning for medication recommendation.

J Biomed Inform

School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China.

Published: March 2023

Medicine recommendation aims to provide a combination of medicine based on the patient's electronic health record (EHR), which is an essential task in healthcare. Existing methods either base recommendations on EHRs or provide models with knowledge of drug-drug interactions (DDIs) to achieve DDI reduction. However, the former models the patient's health history but ignores undesirable DDIs, while the latter lacks mining of patient health records and gets low recommendation accuracy. Therefore, this study contributes to research on personalized medication recommendations that consider drug interaction effects and models the patient's past medical history. In this paper, the Distance-wise and Graph Contrastive Learning (DGCL) framework is proposed. Specifically, we develop a two-stage neural network module for clinical record learning. We propose the distance detection loss to model the difference between the output distribution of current cases and historical records. In the DDI recognition and control task, DGCL proposes a graph contrastive learning method to jointly train the DDI knowledge graph and the electronic record graph, thereby effectively controlling the level of DDI for recommended medications. By comparing the performance on the MIMIC-III dataset with several baselines, DGCL outperforms other models in terms of efficacy and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2023.104301DOI Listing

Publication Analysis

Top Keywords

graph contrastive
12
contrastive learning
12
distance-wise graph
8
models patient's
8
graph
5
dgcl
4
dgcl distance-wise
4
learning
4
learning medication
4
medication recommendation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!