The Fluid-Mosaic Membrane (FMM) model was originally proposed as a general, nanometer-scale representation of cell membranes (Singer and Nicolson, 1972). The FMM model was based on some general principles, such as thermodynamic considerations, intercalation of globular proteins into a lipid bilayer, independent protein and lipid dynamics, cooperativity and other characteristics. Other models had trimolecular structures or membrane globular lipoprotein units. These latter models were flawed, because they did not allow autonomous lipids, membrane domains or discrete lateral dynamics. The FMM model was also consistent with membrane asymmetry, cis- and trans-membrane linkages and associations of membrane components into multi-molecular complexes and domains. It has remained useful for explaining the basic organizational principles and properties of various biological membranes. New information has been added, such as membrane-associated cytoskeletal assemblies, extracellular matrix interactions, transmembrane controls, specialized lipid-protein domains that differ in compositions, rotational and lateral mobilities, lifetimes, functions, and other characteristics. The presence of dense, structured membrane domains has reduced significantly the extent of fluid-lipid membrane areas, and the FMM model is now considered to be more mosaic and dense than the original proposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2023.184135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!