Recent advances in long-acting drug delivery systems for anticancer drug.

Adv Drug Deliv Rev

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China. Electronic address:

Published: March 2023

The use of systemic anticancer chemotherapy is intrinsically limited by its toxicity. Whether dealing with small molecules or biopharmaceuticals, after systemic administration, small doses fail to reach effective intratumoral concentrations, while high doses with significant tumor inhibition effects may also drive the death of healthy cells, endangering the patients. Therefore, strategies based on drug delivery systems (DDSs) for avoiding the systemic toxicity have been designed. Due to their ability to protect drugs from early elimination and control drug release, DDSs can foster tumor exposure to anticancer therapeutics by extending their circulation time or steadily releasing drugs into the tumor sites. However, approval of tailored DDSs systems for clinical use is minimal as the safety and the in vivo activity still need to be ameliorated by manipulating their physicochemical characteristics. During the last few years, several strategies have been described to improve their safety, stability, and fine-tune pharmaceuticals release kinetics. Herein, we reviewed the main DDSs, namely polymeric conjugates, nano or microparticles, hydrogels, and microneedles, explored for long-acting anticancer treatments, highlighting recently proposed modifications and their potential advantages for different anticancer therapies. Additionally, important limitations of long-acting anticancer therapies and future technology directions were also covered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2023.114724DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
delivery systems
8
long-acting anticancer
8
anticancer therapies
8
anticancer
6
advances long-acting
4
drug
4
long-acting drug
4
systems anticancer
4
anticancer drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!