Background: The beet armyworm Spodoptera exigua is a polyphagous caterpillar that causes serious damage to many species of crops and vegetables. To gain insight into how this polyphagous insect differs from less harmful oligophagous species, we generated a chromosome-level assembly and compared it to closely related species with the same or different feeding habits.
Results: Based on Illumina and Pacific Biosciences data and Hi-C technology, 425.6 Mb of genome sequences were anchored and oriented into 31 linkage groups, with an N50 length of 14.8 Mb. A total of 24,649 gene models were predicted, of which 97.4% were identified in the genome assembly. Chemosensory genes are vital for locating food: of the four main families, odorant-binding proteins, chemosensory proteins and olfactory receptors showed little difference, whereas gustatory receptors are greatly expanded in S. exigua. Examination of other polyphagous insects confirmed this difference from oligophagous congeners and further identified the bitter receptor subfamily as being particularly affected.
Conclusion: Our high-quality genome sequence for beet armyworm identified a key expansion of the bitter gustatory receptor subfamily in this and other pests that differs crucially from more benign relatives and offers insight into the biology and possible future means of control for these economically important insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2023.110571 | DOI Listing |
J Chem Ecol
January 2025
Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.
The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.
Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.
View Article and Find Full Text PDFInsects
December 2024
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.
View Article and Find Full Text PDFChemosphere
November 2024
Bayer AG, Crop Science Division, R&D, 40789, Monheim, Germany. Electronic address:
Insect Biochem Mol Biol
December 2024
Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!