Spectral-fluorescent and photochemical properties of trimethine cyanine dyes T-304, T-306, and T-307, having substituents in 6,6'-positions, in various organic solvents, in aqueous buffer solutions, in the presence of surfactants and ethanol additives, and the effect on these properties of addition of DNA have been studied. Strong aggregation of the dyes in aqueous and aqueous buffer solutions has been shown. This is due to increased hydrophobicity of the dyes, which makes it difficult to use them as spectral-fluorescent probes for DNA. In the presence of DNA, trimethine cyanines partially form highly fluorescent complexes of dye monomers with the biomolecule, with slight decomposition of the initial aggregates and the formation of aggregates on DNA molecules. The formation of different types of dye-DNA complexes, i.e., intercalation and binding in the DNA grooves, was modeled by molecular docking. Dye-DNA complexes were also studied by circular dichroism spectroscopy and by thermal dissociation of DNA. To reveal selectivity of the dyes, their interaction with human serum albumin was briefly studied. The presence of moderate concentrations of nonionic surfactants does not lead to a significant decomposition of aggregates, but leads to a biphasic dependence of the fluorescence intensity on the DNA concentration. At the same time, ethanol additives (15%) lead to a more or less linear concentration dependence of the fluorescence intensity, which makes it possible to use these dyes as fluorescent probes for DNA. The effective binding constants of the dyes to DNA and the limits of DNA detection using the dyes in the presence of 15% ethanol were estimated. Photoisomerization and generation of the triplet states of T-304, T-306, and T-307 have been also studied. Along with the fluorescence growth, complexation with DNA leads to an increase in the yield of the triplet states of the dyes. This creates a prerequisite for using the dyes in targeted PDT. In the presence of DNA, the decay kinetics of the triplet states are biexponential, which indicates different types of dye complexes with DNA. The rate constants of oxygen quenching of the triplet states of the dyes bound to DNA are significantly lower than the diffusion-controlled values (taking into account the spin-statistical factor), which is explained by the shielding effect on the triplet molecules in complexes with DNA. The data obtained show that dyes T-304, T-306 and T-307, with addition of 15% ethanol, can be used as possible fluorescent probes for DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122416 | DOI Listing |
Sci Rep
January 2025
MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNat Cancer
January 2025
Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.
The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!