Caco-2 cell-derived biomimetic electrochemical biosensor for cholera toxin detection.

Biosens Bioelectron

School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea; Astrion Inc, Seoul, 02841, South Korea. Electronic address:

Published: April 2023

Cholera is a highly contagious and lethal waterborne disease induced by an infection with Vibrio cholerae (V. cholerae) secreting cholera toxin (CTx). Cholera toxin subunit B (CTxB) from the CTx specifically binds with monosialo-tetra-hexosyl-ganglioside (GM1) found on the exterior cell membrane of an enterocyte. Bioinspired by the pathological process of CTx, we developed an electrochemical biosensor with GM1-expressing Caco-2 cell membrane (CCM) on the electrode surface. Briefly, the electrode surface was functionalized with CCM using the vesicle fusion method. We determined the CTxB detection performances of Caco-2 cell membrane-coated biosensor (CCB) using electrochemical impedance spectroscopy (EIS). the CCB had an excellent limit of detection of ∼11.46 nM and a detection range spanning 100 ng/mL - 1 mg/mL. In addition, the CCB showed high selectivity against various interfering molecules, including abundant constituents of intestinal fluid and various bacterial toxins. The long-term stability of the CCBs was also verified for 3 weeks using EIS. Overall, the CCB has excellent potential for practical use such as point-of-care and cost-effective testing for CTxB detection in developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115105DOI Listing

Publication Analysis

Top Keywords

cholera toxin
12
electrochemical biosensor
8
electrode surface
8
ctxb detection
8
eis ccb
8
ccb excellent
8
detection
5
caco-2 cell-derived
4
cell-derived biomimetic
4
biomimetic electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!