Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp.).

Plant Physiol Biochem

The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China. Electronic address:

Published: March 2023

Flavonoids are important secondary metabolites in the plant growth and development process. As a medicinal plant, pigeon pea is rich in secondary metabolites. As a flavonoid, there are few studies on the regulation mechanism of naringenin in plant stress resistance. In our study, we found that naringenin can increase the pigeon pea's ability to tolerate salt and influence the changes that occur in flavonoids including naringenin, genistein and biochanin A. We analyzed the transcriptome data after 1 mM naringenin treatment, and identified a total of 13083 differentially expressed genes. By analyzing the metabolic pathways of these differentially expressed genes, we found that these differentially expressed genes were enriched in the metabolic pathways of phenylpropanoid biosynthesis, starch and sucrose metabolism and so on. We focused on the analysis of flavonoid biosynthesis related pathways. Among them, the expression levels of enzyme genes CcIFS, CcCHI and CcCHS in the flavonoid biosynthesis pathway had considerably higher expression levels. By counting the number of transcription factors and the binding sites on the promoter of the enzyme gene, we screened the transcription factors CcMYB62 and CcbHLH35 related to flavonoid metabolism. Among them, CcMYB62 has a higher expression level than the others. The hairy root transgene showed that CcMYB62 could induce the upregulation of CcCHI, and promote the accumulation of naringenin, genistein and biochanin A. Our study revealed the molecular mechanism of naringenin regulating flavonoid biosynthesis under salt stress in pigeon pea, and provided an idea for the role of flavonoids in plant resistance to abiotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.02.002DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
16
mechanism naringenin
12
pigeon pea
12
differentially expressed
12
expressed genes
12
molecular mechanism
8
secondary metabolites
8
naringenin genistein
8
genistein biochanin
8
metabolic pathways
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!