Approximation bounds for convolutional neural networks in operator learning.

Neural Netw

MOX, Math Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:

Published: April 2023

Recently, deep Convolutional Neural Networks (CNNs) have proven to be successful when employed in areas such as reduced order modeling of parametrized PDEs. Despite their accuracy and efficiency, the approaches available in the literature still lack a rigorous justification on their mathematical foundations. Motivated by this fact, in this paper we derive rigorous error bounds for the approximation of nonlinear operators by means of CNN models. More precisely, we address the case in which an operator maps a finite dimensional input μ∈R onto a functional output u:[0,1]→R, and a neural network model is used to approximate a discretized version of the input-to-output map. The resulting error estimates provide a clear interpretation of the hyperparameters defining the neural network architecture. All the proofs are constructive, and they ultimately reveal a deep connection between CNNs and the Fourier transform. Finally, we complement the derived error bounds by numerical experiments that illustrate their application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.01.029DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
error bounds
8
neural network
8
approximation bounds
4
bounds convolutional
4
neural
4
networks operator
4
operator learning
4
learning deep
4

Similar Publications

In order to promote the digital dissemination and preservation of Chinese intangible cultural heritage, this work constructs a digital platform for its transmission. The platform integrates a range of advanced technologies, including the Densely Connected Convolutional Networks - Bottleneck and Compression model, a notable convolutional neural network, along with natural language processing algorithms, generative adversarial network algorithms, and neural collaborative filtering algorithms. The platform is validated with 224,055 publicly archived valid data records, ensuring its effectiveness and reliability.

View Article and Find Full Text PDF

Purpose: The diagnosis of fungal keratitis using potassium hydroxide (KOH) smears of corneal scrapings enables initiation of the correct antimicrobial therapy at the point-of-care but requires time-consuming manual examination and expertise. This study evaluates the efficacy of a deep learning framework, dual stream multiple instance learning (DSMIL), in automating the analysis of whole slide imaging (WSI) of KOH smears for rapid and accurate detection of fungal infections.

Design: Retrospective observational study.

View Article and Find Full Text PDF

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

BMC Oral Health

January 2025

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

View Article and Find Full Text PDF

Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.

View Article and Find Full Text PDF

The Internet of Things (IoT)-based smart solutions have been developed to predict water quality and they are becoming an increasingly important means of providing efficient solutions through communication technologies. IoT systems are used for enabling connection between various devices based on the ability to gather and collect information. Furthermore, IoT systems are designed to address the environment and the automation industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!