Swarm formation as backward diffusion.

Phys Biol

Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States of America.

Published: February 2023

Considerable progress has been made in understanding insect swarms-forms of collective animal behaviour that unlike bird flocks, fish schools and animal herds do not possess global order. Nonetheless, little is known about swarm formation. Here we posit a mechanism for the formation of insect swarms that is consistent with recent empirical observations reported by (Patel and Ouellette 2022). It correctly predicts new features of swarm formation that have not been reported on previously. Our simple analytically tractable model shows how harmonic potential wells, a characteristic feature of swarming, and so swarm cohesion, arise from diffusion and local fission-fusion dynamics and how, in accord with observations, these wells deepen over time. The overall form of these potential wells is predicted to depend on the number and spatial distribution of all individuals, making them manifestly a collective phenomenon. Finally, swarms are predicted to 'cool' (that is, condense) as they form.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/acb986DOI Listing

Publication Analysis

Top Keywords

swarm formation
12
potential wells
8
swarm
4
formation backward
4
backward diffusion
4
diffusion considerable
4
considerable progress
4
progress understanding
4
understanding insect
4
insect swarms-forms
4

Similar Publications

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Multidrug-resistant infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and screened for their ability to synthesize multifunctional nanocomposites (NCs).

View Article and Find Full Text PDF

(PA), as a common pathogen of nosocomial infections, has been experiencing an increasing rate of drug resistance with the widespread use and abuse of antimicrobial drugs. High-drug-resistance and high-virulence phenotypes are two distinctive features of the strong pathogenicity of multi-drug-resistant PA. Exploring the characterization of virulence factor expression and its relationship with the multi-drug resistance phenotype is essential to reduce the further development of resistance as well as a high standard of infection prevention and control.

View Article and Find Full Text PDF

Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!