Introduction: Genomic assays are useful tools for tailoring adjuvant treatment in early breast cancer. We aimed to analyse the role of an institutional protocol of a genomic assay for chemotherapy de-escalation.
Material And Methods: Prospective cohort study of all consecutive women diagnosed with hormone receptor-positive and human epidermal growth factor receptor 2-negative early breast cancer, tested with the 21-gene Recurrence Score (RS) assay from August 2015 to July 2018 at a Portuguese cancer centre. For being tested, patients should meet at least one of the pre-defined inclusion criteria: i) luminal A-like, pT2pN0; ii) luminal A-like, 1 - 3 positive nodes and comorbidities with higher risk of chemotherapy-induced toxicity; iii) pT1-2pN0, progesterone receptor ≤ 20% and/or Ki67 14% - 40%. Adjuvant treatment was de-escalated to isolated endocrine therapy if RS was less than 18. We measured the reduction in chemotherapy prescribing and its clinical impact, the RS association with pathologic features, and the protocol feasibility.
Results: We tested 154 women with a median age of 61 years old (range: 25 - 79), 69% postmenopausal. Tumours were mainly pT1 (55%), pN0 (82%), invasive ductal (73%), G2 (86%), luminal B-like (69%) and stage IA (85%). We obtained a RS less than 18 in 60% of women, with an overall adjuvant chemotherapy reduction of 65%. Seven (95% confidence interval: 5 - 10) patients needed to be screened with the 21-gene RS assay to prevent one clinically relevant adverse event during the first six months of adjuvant treatment. Considering the currently used RS cut-off, only 9% of node-negative and 11% of node-positive patients had RS over 25. We found no relevant associations between RS and pathologic features. The protocol was feasible and did not compromise the adequate timing for adjuvant treatment.
Conclusion: These criteria allowed the de-escalation of adjuvant systemic treatment in at least six out of ten women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.20344/amp.18539 | DOI Listing |
J Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Public Health Nutr
January 2025
Department of Pediatrics, Division of General Academic Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
Objective: To explore mothers' and early childhood (EC) educators' experiences of breastfeeding/breast milk provision and breastfeeding support in child care centers (CCCs) in the United States (U.S.).
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.
Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.
Cureus
December 2024
General Surgery, Rajendra Institute of Medical Sciences, Ranchi, IND.
Phyllodes tumor is a type of fibroepithelial neoplasm involving the breast. This tumor is rarely reported in adolescents and the elderly and has a peak incidence in middle-aged women. Histologically, phyllodes tumors are classified as benign, borderline, or malignant.
View Article and Find Full Text PDFPurpose: The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive ( ) breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!