Toward MOF@Polymer Core-Shell Particles: Design Principles and Potential Applications.

Acc Chem Res

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China 201210.

Published: February 2023

ConspectusCompositing MOFs with polymers brings out the best properties of both worlds. The solubility and excellent mechanical properties of polymers endow the brittle, powdery MOFs with enhanced processability, thereby enriching their functions as solid sorbents, filters, membranes, catalysts, drug delivery vehicles, and so forth. While most MOF-polymer composites are random mixtures of two materials with little control over their fine structures, MOF@polymer core-shell particles have recently emerged as a new platform for precise composite design. The well-defined polymer coating can keep the rich pore characteristics of the MOF intact while furnishing the MOF with new properties such as improved dispersibility in various media, tunable surface energy, enhanced chemical stability, and regulated guest diffusion. Nevertheless, the structural and chemical complexity of MOFs poses a grand challenge to the development of a generalizable and feasible strategy for constructing MOF@polymer. Examples in the literature that showcase the presence of a well-defined polymer shell on the MOF with fully reserved porosity are rare. Moreover, methods for coating MOFs with condensation polymers (e.g., polyimide, polysulfone) are severely underexplored, despite their clear potential as membrane materials. In this Account, we present our group's effort over the past 4 years on the synthesis and applications of MOF@polymer composites. We first described a highly generalizable surface polymerization method that utilizes the rapid physisorption of a random copolymer (RCP) to carry initiating groups to the MOF surfaces. Subsequent controlled radical polymerization led to the formation of a uniform methacrylate or styrenic polymer on the MOF with tunable thickness and composition. To utilize the properties of condensation polymers, we pioneered the covalent grafting of polyimide (PI) brushes to UiO-66-NH surfaces. In addition, to circumvent the need for a covalent anchoring group, we further developed an MOF surface grafting method based on mechanical linkage. Instead of connecting to the ligand, polyimide (PI) oligomer was linked to a functionalized linear polymer physically entangled within an MOF, thus realizing surface grafting with PI. Alternatively, PIs, polysulfone (PSF), and polycarbonate (PC) can also be grafted to various MOF surfaces through a metal-organic nanocapsule (MONC)-mediated method using a combination of electrostatic interaction and coordination bonds. To find a rapid and low-cost surface coating method suitable for commercialization, a new approach called non-solvent-induced surface-aimed deposition (NISAP) was developed. The action of the solvent phase separation drives dianhydrides and polyamines to the MOF surface, thus realizing accelerated polymerization and the rapid formation of a polymer coating on the MOF. Finally, we provided an overview of the unique properties and potential applications of MOF@polymer composites, including improved stability, MMMs, porous liquids (PLs), and immobilizing homogeneous catalysts. We hope that this Account can inspire more researchers to further develop and optimize the synthetic strategies for MOF@polymer and uncover its full application potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.2c00695DOI Listing

Publication Analysis

Top Keywords

mof
10
mof@polymer core-shell
8
core-shell particles
8
potential applications
8
well-defined polymer
8
polymer coating
8
condensation polymers
8
applications mof@polymer
8
mof@polymer composites
8
mof surfaces
8

Similar Publications

This study aims to establish a thyristor-controlled series compensator (TCSC) equipped with a proportional integral derivative with filter (PIDF) controller by using a futuristic optimisation technique called evolutionary programming sine cosine algorithm (EPSCA) with multiobjective function (MOF). EPSCA is developed by merging evolutionary programming and the sine cosine algorithm. Three stability indicators, i.

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.

View Article and Find Full Text PDF

Portable pH meter-based competitive immunoassay of E-selectin using urease-encapsulated metal-organic frameworks.

Talanta

January 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:

E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!