Purpose: During post-rainy and rice fallow cropping seasons, popular blackgram varieties are severely affected by powdery mildew leading to severe yield loss. The lack of natural genetic variability for powdery mildew resistance in blackgram germplasm warrants mutation breeding. Hence, in this study, blackgram cultivar CO6 was mutagenized with gamma ray and ethyl methanesulphonate (EMS) to create variability for powdery mildew resistance.

Materials And Methods: Seeds of blackgram CO6 were irradiated with three doses of gamma ray (200 Gy, 300 Gy and 400 Gy) followed by two doses of ethyl methanesulphonate (EMS; 20 and 30 mM) to achieve six combination treatments. Selected resistant mutants of M generation were characterized for agronomic, histological, enzyme and biochemical traits along with powdery mildew resistant LBG 17 and susceptible CO6 checks. Molecular variability was studied using 72 simple sequence repeat (SSR) markers.

Results: In the M generation, 60 powdery mildew resistant mutants were identified and a total of 25 high yielding mutants were evaluated further to confirm powdery mildew resistance and yield. Nine resistant mutants (PM 13, PM 20, PM 21, PM 42, PM 53, PM 54, PM 56, PM 57 and PM 60) and the resistant check (LBG17) showed significantly higher values for leaf density, trichome density, SOD, CAT, POX, PPO, total phenols, phytic acid and silica content. SSR markers ., CEDG154, CEDG290, CEDG139, CEDG259, CEDG191, CEDG024, CEDG 282, CEDG 166, CEDG 232 and CEDG 088 were found polymorphic between resistant mutants and the parent CO6.

Conclusion: The study has demonstrated that sufficient variability was induced in the blackgram for powdery mildew resistance. The elevated levels of SOD, CAT, POX, PPO, total phenols, phytic acid, and silica content observed in selected mutants may be attributed to powdery mildew resistance. The superior mutants identified in this study may be used as donors for the development of powdery mildew resistant lines or released as a new variety.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2023.2173820DOI Listing

Publication Analysis

Top Keywords

powdery mildew
40
mildew resistance
20
resistant mutants
16
gamma ray
12
mildew resistant
12
powdery
10
mildew
10
mutants
8
resistance blackgram
8
variability powdery
8

Similar Publications

Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.

View Article and Find Full Text PDF

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.

View Article and Find Full Text PDF

An emerging fungal disease is spreading across the globe and affecting the blueberry industry.

New Phytol

January 2025

Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.

Powdery mildew is an economically important disease caused by c. 1000 different fungal species. Erysiphe vaccinii is an emerging powdery mildew species that is impacting the blueberry industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!