Limited treatment options, recalcitrance, and resistance to existing therapeutics encourage the discovery of novel antifungal leads for alternative therapeutics. Antifungal lipopeptides have emerged as potential candidates for developing new and alternative antifungal therapies. In our previous studies, we isolated and identified the lipopeptide variant AF and purified it to homogeneity via chromatography from the cell-free supernatant of Bacillus subtilis. AF was found to have broad-spectrum antifungal activity against more than 110 fungal isolates. In this study, we found that clinical isolates of Candida tropicalis and Candida auris exposed to AF exhibited low MICs of 4 to 8 mg/L. Time-kill assays indicated the pharmacodynamic potential of AF. Biocompatibility assays demonstrated ~75% cell viability at 8 mg/L of AF, indicating the lipopeptide's minimally cytotoxic nature. In lipopeptide-treated C. tropicalis and C. auris cells, scanning electron microscopy revealed damage to the cell surface, while confocal microscopy with acridine orange(AO)/propidium iodide (PI) and FUN-1 indicated permeabilization of the cell membrane, and DNA damage upon DAPI (4',6-diamidino-2-phenylindole) staining. These observations were corroborated using flow cytometry (FC) in which propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123 (Rh123) staining of cells treated with AF revealed loss of membrane integrity, increased reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction, respectively. Membrane perturbation was also observed in the 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence study and the interaction with ergosterol was observed by an ergosterol binding assay. Decreased membrane dipole potential also indicated the probable binding of lipopeptide to the cell membrane. Collectively, these findings describe the mode of action of AF against fungal isolates by membrane disruption and ROS generation, demonstrating its antifungal potency. C. tropicalis is a major concern for candidiasis in India and C. auris has emerged as a resistant yeast causing difficult-to-treat infections. Currently, amphotericin B (AMB) and 5-flucytosine (5-FC) are the main therapeutics for systemic fungal infections; however, the nephrotoxicity of AMB and resistance to 5-FC is a serious concern. Antifungal lead molecules with low adverse effects are the need of the hour. In this study, we briefly describe the antifungal potential of the AF lipopeptide and its mode of action using microscopy, flow cytometry, and fluorescence-based assays. Our investigation reveals the basic mode of action of the investigated lipopeptide. This lipopeptide with broad-spectrum antifungal potency is apparently membrane-active, and there is a smaller chance that organisms exposed to such a compound will develop drug resistance. It could potentially act as a lead molecule for the development of an alternative antifungal agent to combat candidiasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100908 | PMC |
http://dx.doi.org/10.1128/spectrum.01583-22 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).
View Article and Find Full Text PDFMol Divers
January 2025
Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China.
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa.
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on , using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!