Chromosome conformation capture (3C) is used to detect three-dimensional chromatin interactions. Typically, chemical crosslinking with formaldehyde (FA) is used to fix chromatin interactions. Then, chromatin digestion with a restriction enzyme and subsequent religation of fragment ends converts three-dimensional (3D) proximity into unique ligation products. Finally, after reversal of crosslinks, protein removal, and DNA isolation, DNA is sheared and prepared for high-throughput sequencing. The frequency of proximity ligation of pairs of loci is a measure of the frequency of their colocalization in three-dimensional space in a cell population. A sequenced Hi-C library provides genome-wide information on interaction frequencies between all pairs of loci. The resolution and precision of Hi-C relies on efficient crosslinking that maintains chromatin contacts and frequent and uniform fragmentation of the chromatin. This paper describes an improved in situ Hi-C protocol, Hi-C 3.0, that increases the efficiency of crosslinking by combining two crosslinkers (formaldehyde [FA] and disuccinimidyl glutarate [DSG]), followed by finer digestion using two restriction enzymes (DpnII and DdeI). Hi-C 3.0 is a single protocol for the accurate quantification of genome folding features at smaller scales such as loops and topologically associating domains (TADs), as well as features at larger nucleus-wide scales such as compartments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228641 | PMC |
http://dx.doi.org/10.3791/64001 | DOI Listing |
J Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Soochow University, Suzhou 215123, China.
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Richter syndrome (RS), characterized by aggressive lymphoma arising from chronic lymphocytic leukaemia (CLL), presents a poor response to treatment and grim prognosis. To elucidate RS mechanisms, paired samples from a patient with DLBCL-RS were subjected to single-cell RNA sequencing (scRNA-seq) and high-throughput chromosome conformation capture (Hi-C) sequencing. Over 10,000 cells were profiled via scRNA-seq, revealing the comprehensive B cell transformation in RS.
View Article and Find Full Text PDFLife Sci Alliance
April 2025
National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!