Purpose: Deep learning (DL) is a technique explored within ophthalmology that requires large datasets to distinguish feature representations with high diagnostic performance. There is a need for developing DL approaches to predict therapeutic response, but completed clinical trial datasets are limited in size. Predicting treatment response is more complex than disease diagnosis, where hallmarks of treatment response are subtle. This study seeks to understand the utility of DL for clinical problems in ophthalmology such as predicting treatment response and where large sample sizes for model training are not available.
Materials And Methods: Four DL architectures were trained using cross-validated transfer learning to classify ultra-widefield angiograms (UWFA) and fluid-compartmentalized optical coherence tomography (OCT) images from a completed clinical trial (PERMEATE) dataset (n=29) as tolerating or requiring extended interval Anti-VEGF dosing. UWFA images (n=217) from the Anti-VEGF study were divided into five increasingly larger subsets to evaluate the influence of dataset size on performance. Class activation maps (CAMs) were generated to identify regions of model attention.
Results: The best performing DL model had a mean AUC of 0.507 ± 0.042 on UWFA images, and highest observed AUC of 0.503 for fluid-compartmentalized OCT images. DL had a best performing AUC of 0.634 when dataset size was incrementally increased. Resulting CAMs show inconsistent regions of interest.
Conclusions: This study demonstrated the limitations of DL for predicting therapeutic response when large datasets were not available for model training. Our findings suggest the need for hand-crafted approaches for complex and data scarce prediction problems in ophthalmology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894083 | PMC |
http://dx.doi.org/10.3389/fopht.2022.852107 | DOI Listing |
Allergy Asthma Proc
January 2025
From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C.
Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.
View Article and Find Full Text PDFBiol Direct
December 2024
Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
Background: Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFChin Med
December 2024
School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
Background: Liver fibrosis is a complex reparative process in response to chronic liver injuries, with limited effective therapeutic options available in clinical practice. During liver fibrosis, liver sinusoidal endothelial cells (LSECs) undergo phenotypic changes and also play a role in modulating cellular communications. Si-Wu-Tang (SWT), a traditional Chinese herbal remedy, has been extensively studied for its effectiveness in treating hematological, gynecological and hepatic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!