Investigating the factors that explain white matter hyperintensity load in older Indians.

Brain Commun

Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA.

Published: January 2023

White matter hyperintensities are areas of hyperintense signal on MRI that typically represent cerebrovascular pathology. While focal white matter hyperintensities are common among older individuals, extensive white matter hyperintensities have been found to accelerate the progression of dementia. However, little is currently known about how various socioeconomic, health, lifestyle and environmental factors affect the severity of these lesions, particularly in low- and middle-income countries such as India. We investigated this question using cross-sectional MRI data ( = 126) from a pilot neuroimaging sub-study of an ongoing, nationally representative epidemiological study of late-life cognition in India. As a screening step, we estimated white matter hyperintensity load from fluid-attenuated inversion recovery MRI using a fully automated technique and tested for associations with each factor separately, controlling for age, sex and estimated total intracranial volume in each case. A combined model of white matter hyperintensity load included five factors which were significant after multiple comparisons correction: systolic blood pressure, body mass index, urbanicity status (urban versus rural living), daily chore hours and the frequency of store trips. This model explained an additional 27% of the variance in white matter hyperintensity load (54 versus 27% for the baseline model with only age, sex and estimated total intracranial volume). We accounted for the possibility of reverse causality by additionally controlling for concurrent markers of neurodegeneration and cognitive impairment, with no substantial change in our findings. Overall, our findings suggest that controlling high blood pressure and maintaining both a healthy body mass index and high levels of physical activity may reduce white matter hyperintensity load in older Indian adults, helping to prevent or delay dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891346PMC
http://dx.doi.org/10.1093/braincomms/fcad008DOI Listing

Publication Analysis

Top Keywords

white matter
32
matter hyperintensity
20
hyperintensity load
20
matter hyperintensities
12
white
8
matter
8
load older
8
age sex
8
sex estimated
8
estimated total
8

Similar Publications

A Framework for Assessing Viral Pathogens: A Key Element of the BARDA Emerging Infectious Diseases Strategy.

Health Secur

January 2025

Richard C. White, PhD, is an Interdisciplinary Scientist, Medical Countermeasures Program; Peter L. Adams, PhD, and Karl J. Erlandson, PhD, are Interdisciplinary Scientists, and Ramya Natarajan, PhD, is a Health Scientist, Influenza and Emerging Infectious Diseases Division; Kyla A. Britson, PhD, Rushyannah Killens-Cade, PhD, and Malen A. Link, PhD, are Interdisciplinary Scientists, and Daniel N. Wolfe, PhD, is Deputy Director, Division of Chemical, Biological, Radiological, and Nuclear (CBRN) Countermeasures; Derek L. Eisnor, MD, is a Medical Officer, Division of Clinical Development; Brenda L. Fredericksen, PhD, is Program Director, Nonclinical Research Program, and James Little, MS, is a Senior Scientific Advisor, Division of Nonclinical Development; John S. Lee, PhD, is Program Director, Molecular Diagnostics Program, and Julie M. Villanueva, PhD, is a Scientific Advisor, Detection, Diagnostics, and Devices Infrastructure Division; Kimberly L. Sciarretta, PhD, is Program Director, Launch Office, Division of Research, Innovation, and Ventures; and Robert A. Johnson, PhD, is Director, Medical Countermeasures Program; all at the Biomedical Advanced Research and Development Authority, Washington, DC. Gerald R. Kovacs, PhD, is a Senior Advisor; Huyen Cao, MD, is a Senior Clinical Studies Analyst; Christopher Dale, PhD, and Mark Michalik, MBA, are Senior Subject Matter Experts; Mario H. Skiadopoulos, PhD, is a Preclinical Drug Development Subject Matter Expert; and Xiaomi Tong, PhD, is a Senior Regulatory Affairs Subject Matter Expert; all at Tunnell Government Services, Berwyn, PA. Suchismita Chandran, PhD, is a Lead Associate, and Michael Rowe, MS, is a Senior Consultant; both at Booz Allen Hamilton, McLean, VA. Ethan J. Fritch, PhD, is an ORISE Fellow, Oak Ridge Institute for Science and Education, Oak Ridge, TN. George Robertson, PhD, is Chief Scientific Officer, Cambra Consulting, Inc., Woodbridge, VA.

The COVID-19 pandemic has revealed the need for nations to prepare more effectively for emerging infectious diseases. Preparing for these threats requires a multifaceted approach that includes assessing pathogen threat, building flexible capabilities for rapid medical countermeasure (MCM) development, and exercising, maintaining, and improving those response capabilities. The Biomedical Advanced Research and Development Authority (BARDA) promotes the advanced development of MCMs in response to natural and manmade threats.

View Article and Find Full Text PDF

Cerebral autosomal-dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL) is the most prevalent monogenic inherited cause of cerebral small-vessel disease. Despite its prevalence, there is currently no proven therapy to prevent or reverse the progression of the disease. This study aimed to characterize the functional integrity of long white matter tracts in CADASIL transgenic mice, both with and without focal white matter lesions in the corpus callosum added on, utilizing optical resting-state functional connectivity imaging alongside behavioral examinations.

View Article and Find Full Text PDF

Cortical Neurotransmitters Measured by Magnetic Resonance Spectroscopy Change Following Traumatic Brachial Plexus Injury.

J Brachial Plex Peripher Nerve Inj

January 2025

School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

 GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. In response to injury within the central nervous system, GABA promotes cortical plasticity and represents a potential pharmacological target to improve functional recovery. However, it is unclear how GABA changes in the brain after traumatic brachial plexus injuries (tBPIs) which represents the rationale for this pilot study.

View Article and Find Full Text PDF

Multidimensional structural analyses revealed a correlation between thalamic atrophy and white matter degeneration in idiopathic dystonia.

Brain Commun

January 2025

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.

Although aberrant changes in grey and white matter are core features of idiopathic dystonia, few studies have explored the correlation between grey and white matter changes in this disease. This study aimed to investigate the coupling correlation between morphological and microstructural alterations in patients with idiopathic dystonia. Structural T1 imaging and diffusion tensor imaging were performed on a relatively large cohort of patients.

View Article and Find Full Text PDF

Brain edema and neurological symptoms are the hallmarks of the uncommon disease known as posterior reversible encephalopathy syndrome (PRES), which can have several etiological causes. Since the etiology determines the course of treatment, diagnosis is crucial. There have only been 14 cases of PRES associated with inflammatory bowel disorders documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!