The food enzyme phospholipase A2 (phosphatidylcholine 2-acylhydrolase EC 3.1.1.4) is produced with the genetically modified strain AS-10 by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in four food manufacturing processes, i.e. egg processing, baking processes, degumming of fats and oils and milk processing for cheese production. Since residual amounts of total organic solids (TOS) are removed in degumming of fats and oils, dietary exposure was calculated only for the remaining three food manufacturing processes. Dietary exposure to the food enzyme-TOS was estimated to be up to 0.41 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 191.2 mg TOS/kg bw per day, the mid-dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure above 460. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890527PMC
http://dx.doi.org/10.2903/j.efsa.2023.7458DOI Listing

Publication Analysis

Top Keywords

food enzyme
20
dietary exposure
16
food
8
enzyme phospholipase
8
genetically modified
8
modified strain
8
strain as-10
8
rise safety
8
safety concerns
8
food manufacturing
8

Similar Publications

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

Structural insights into how Cas9 targets nucleosomes.

Nat Commun

December 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.

View Article and Find Full Text PDF

Background: The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045).

View Article and Find Full Text PDF

Background: Mycotoxins are considered one of the most important problems and threats that face poultry producers.

Aim: This study was conducted to investigate the pathological, hematological, and biochemical alterations in chickens fed on mycotoxins contamination ration.

Methods: 434 feed samples were collected from poultry farms operating in Babil Governorate/Iraq, where feed samples were collected over the course of 2023, and these samples were tested by direct competitive enzyme-linked immunosorbent assay to determine the level of mycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!