Background: Artificial intelligence breast ultrasound diagnostic system (AIBUS) has been introduced as an alternative approach for handheld ultrasound (HHUS), while their results in BI-RADS categorization has not been compared.

Methods: This pilot study was based on a screening program conducted from May 2020 to October 2020 in southeast China. All the participants who received both HHUS and AIBUS were included in the study ( = 344). The ultrasound videos after AIBUS scanning were independently watched by a senior radiologist and a junior radiologist. Agreement rate and weighted Kappa value were used to compare their results in BI-RADS categorization with HHUS.

Results: The detection rate of breast nodules by HHUS was 14.83%, while the detection rates were 34.01% for AIBUS videos watched by a senior radiologist and 35.76% when watched by a junior radiologist. After AIBUS scanning, the weighted Kappa value for BI-RADS categorization between videos watched by senior radiologists and HHUS was 0.497 ( < 0.001) with an agreement rate of 78.8%, indicating its potential use in breast cancer screening. However, the Kappa value of AIBUS videos watched by junior radiologist was 0.39, when comparing to HHUS.

Conclusion: AIBUS breast scan can obtain relatively clear images and detect more breast nodules. The results of AIBUS scanning watched by senior radiologists are moderately consistent with HHUS and might be used in screening practice, especially in primary health care with limited numbers of radiologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889643PMC
http://dx.doi.org/10.3389/fpubh.2022.1098639DOI Listing

Publication Analysis

Top Keywords

bi-rads categorization
16
watched senior
16
aibus scanning
12
junior radiologist
12
videos watched
12
artificial intelligence
8
intelligence breast
8
breast ultrasound
8
handheld ultrasound
8
screening program
8

Similar Publications

Purpose: Whether breast density mediates associations between early life body size and pubertal timing with postmenopausal breast cancer is underexplored.

Methods: We studied 33,939 Danish women attending the Capital Mammography Screening Program at ages 50-69 years. Early life anthropometry and pubertal timing information came from the Copenhagen School Health Records Register.

View Article and Find Full Text PDF

Objective: To identify clusters of women with similar trajectories of breast density change over four longitudinal assessments and to examine the association between these trajectories and the subsequent risk of breast cancer.

Design: Retrospective cohort study.

Setting: Data from the national breast cancer screening programme, which is embedded in the National Health Insurance Service database in Korea.

View Article and Find Full Text PDF

Contrast-enhanced mammography (CEM) has recently gained recognition as an effective alternative to breast magnetic resonance imaging (MRI) for assessing breast lesions, offering both morphological and functional imaging capabilities. However, the phenomenon of background parenchymal enhancement (BPE) remains a critical consideration, as it can affect the interpretation of images by obscuring or mimicking lesions. While the impact of BPE has been well-documented in MRI, limited data are available regarding the factors influencing BPE in CEM and its relationship with breast cancer (BC) characteristics.

View Article and Find Full Text PDF

This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study.

View Article and Find Full Text PDF

A Short Breast Imaging Reporting and Data System-Based Description for Classification of Breast Mass Grade.

Life (Basel)

December 2024

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, San Andres Cholula 72840, Mexico.

Identifying breast masses is relevant in early cancer detection. Automatic identification using computational methods helps assist medical experts with this task. Although high values have been reported in breast mass classification from digital mammograms, most results have focused on a general benign/malignant classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!