Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the construction of two heterojunction photocatalysts by coordinative anchoring of M(salophen)Cl complexes (M = Fe(III) and Mn(III)) to rutile TiO through a silica-aminopyridine linker (SAPy) promotes the visible-light-assisted photodegradation of organic dyes. The degradation efficiency of both cationic rhodamine B (RhB) and anionic methyl orange (MO) dyes by Fe- and Mn-TiO-based catalysts in the presence of HO under sunlight and low-wattage visible bulbs (12-18 W) is investigated. Anionic MO is more degradable than cationic RhB, and the Mn catalyst shows more activity than its Fe counterpart. Action spectra demonstrate the maximum apparent quantum efficiency (AQY) at 400-450 nm, confirming the visible-light-driven photocatalytic reaction. The enhanced photocatalytic activity might be attributed to the improved charge transfer in the heterojunction photocatalysts evidenced by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analyses. A radical pathway for the photodegradation of dyes is postulated based on scavenging experiments and spectral data. This work provides new opportunities for constructing highly efficient catalysts for wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893450 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!