Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of revealed the presence of bioactive compounds with anticancer activity. The EA extract of exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of causes upregulation of pro-apoptotic (, , , and ), cell cycle arrest (), and tumor suppressor () related genes. Additionally, the downregulation of antiapoptotic genes ( and ) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the observations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893742 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05746 | DOI Listing |
Sci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFChem Biodivers
December 2024
Latvian Institute of Organic Synthesis, Natural Products, Riga, Latvia, LV-1006, Riga, LATVIA.
Kitasatospora continue to be a rich source of chemically diverse and bioactive peptide natural products. This review highlights two strategies in peptide natural products research of Kitasatospora, 1) natural product-first approach guided by a major compound, biological activity or genomic analysis, and 2) enzyme-first approach guided by bioinformatic tools to construct a sequence similarity network for the discovery of biosynthetic enzymes. The structures of peptides, biosynthetic origins of unique building blocks, recent reports of post-translational modifying enzymes for constructing these peptides, and knowledge gap in biosynthesis will also be presented.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China.
Safflower ( L.) is a valuable oil crop due to its bioactive ingredients and high linoleic acid content, which contribute to its antioxidant properties and potential for preventing atherosclerosis. Current research on safflower focuses on understanding the biosynthesis of seed oil through omics strategies, yet there is a lack of comprehensive knowledge of the dynamic changes in lipids and the regulatory mechanisms during seed development.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing 100020, China.
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!