This review presents scientific findings which indicate biomolecules are excellent candidates for the development of biopesticides. Efforts are being done to find routes to increase their concentrations in the cultivation media because this concentration facilitates applications, storage, and transportation. Some of these routes are co-fermentation and ultrasound-assisted fermentation. Ultrasonication increases metabolite production and growth rates by improvement of cell permeability and nutrient uptake rates through cell membranes. For example, 24% increase in the enzymatic activity of cellulases produced by in solid-state fermentation was achieved with ultrasonication. Also, chitinase and β-1,3-glucanase productions were stimulated by ultrasound in cultivation, presenting positive results. The common parameters evaluated in the production of biomolecules by ultrasound-assisted fermentation are the duty cycle, time of application, power, energetic density, and how long the sonication is maintained in the fermentation media. Many successful cases are reported and discussed, which include the final formulation of bioproducts for agricultural applications. In this trend, nanotechnology is a promising tool for the development of nanoformulations. Nanoemulsification, green synthesis, biosynthesis, or biogenic synthesis are technologies used to produce such nanoformulations, allowing the controlled release of control agents, as well as the delivery of biomolecules to specific targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889597PMC
http://dx.doi.org/10.1007/s13205-023-03486-2DOI Listing

Publication Analysis

Top Keywords

ultrasound-assisted fermentation
8
biomolecules
4
biomolecules modern
4
modern sustainable
4
sustainable agriculture
4
agriculture review
4
review presents
4
presents scientific
4
scientific findings
4
findings indicate
4

Similar Publications

Characterization of seselopsis tianschanica schischk polysaccharide () and its application in developing a functional fermented beverage with highland barle.

Food Chem X

December 2024

National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

This study aimed to isolate and characterize (, a natural functional ingredient, and to develop a compound fermented beverage of nutritional and health combining with highland barley. Firstly, the was isolated and characterized with ultrasound-assisted enzymatic method and chromatography, and analyzed the structural features of polysaccharide -1. Then, a compounded fermented beverage integrating Tibet and highland barley was created, with technology and flavor substances studied.

View Article and Find Full Text PDF

Influence of sonication-assisted fermentation on the physicochemical features and antioxidant activities of yogurts fortified by polyphenol-rich pineapple peel powder with varied chemical profiling.

Food Res Int

December 2024

College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China. Electronic address:

This study investigated the effects of pineapple peel powder with varied chemical profiles and sonication-assisted polyphenol biotransformation during fermentation on the quality characteristics of yogurt products. It aimed at exploring the feasibility of sonication-assisted fermentation to enhance the physicochemical properties, control post-acidification, and improve antioxidant activities in yogurts fortified with polyphenol-rich pineapple peel powder. Targeted analysis showed that polyphenol-rich pineapple dietary fiber obtained by ultrasonication-assisted extraction (NPFU) exhibited the slowest rates of acidification, highest antioxidant capacity, and lowest degree of whey separation at 21.

View Article and Find Full Text PDF

Green extraction technologies for valorization of date seed waste to achieve sustainable development goals: Biofunctional and innovative food applications.

Food Res Int

December 2024

Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:

Date processing industries generate substantial quantities of waste, including date seeds, which present disposal challenges and environmental concerns. Traditionally, date seed waste has been discarded through landfilling, open burning, or dumping, leading to soil, air, and water pollution. However, with increasing awareness of environmental sustainability and resource conservation, there is a growing interest in valorizing date seed waste using green extraction technologies and innovative food product development approaches for date seed valorization.

View Article and Find Full Text PDF

Metabolomic changes in Citrus reticulata peel after conventional and ultrasound-assisted solid-state fermentation with Aspergillus niger: A focus on flavonoid metabolism.

Food Chem

November 2024

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; International Joint Research Laboratories of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China. Electronic address:

This study explored the changes in nutrients, metabolites, and enzyme activity in Citrus reticulata peel powders (CRPP) under conventional or ultrasound-assisted solid-state fermentation (SSF) using Aspergillus niger CGMCC 3.6189. Compared to nonfermented CRPP (NF-CRPP), ultrasound-assisted fermented CRPP (UIS-CRPP) significantly increased total protein and carotenoid levels by 85.

View Article and Find Full Text PDF

This study examined the effect of triple-frequency ultrasound treatment (TFUT)-assisted lactic acid bacteria (LAB-L. plantarum and L. helveticus fermentation for 24-h and 48-h) on the chemical, structural, morphological, metabolic, and sensory properties of rice lees (RL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!