Autoimmune disorders are complex diseases of unclear etiology, although evidence suggests that the convergence of genetic susceptibility and environmental factors are critical. In type 1 diabetes (T1D), enterovirus infection and disruption of the intestinal microbiota are two environmental factors that have been independently associated with T1D onset in both humans and animal models. However, the possible interaction between viral infection and the intestinal microbiota remains unknown. Here, we demonstrate that Coxsackievirus B4 (CVB4), an enterovirus that accelerates T1D onset in non-obese diabetic (NOD) mice, induced restructuring of the intestinal microbiome prior to T1D onset. Microbiome restructuring was associated with an eroded mucosal barrier, bacterial translocation to the pancreatic lymph node, and increased circulating and intestinal commensal-reactive antibodies. The CVB4-induced change in community composition was strikingly similar to that of uninfected NOD mice that spontaneously developed diabetes, implying a mutual "diabetogenic" microbiome. Notably, members of the Bifidobacteria and Akkermansia genera emerged as conspicuous members of this diabetogenic microbiome, implicating these taxa, among others, in diabetes onset. Further, fecal microbiome transfer (FMT) of the diabetogenic microbiota from CVB4-infected mice enhanced T1D susceptibility and led to diminished expression of the short chain fatty acid receptor GPR43 and fewer IL-10-expressing regulatory CD4 T cells in the intestine of naïve NOD recipients. These findings support an overlap in known environmental risk factors of T1D, and suggest that microbiome disruption and impaired intestinal homeostasis contribute to CVB-enhanced autoreactivity and T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892191 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1096323 | DOI Listing |
Diabetes
January 2025
Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA.
Increasing evidence shows that pathogenic T cells in type 1 diabetes (T1D) that may have evaded negative selection recognize post-translational modified (PTM) epitopes of self-antigens. We have investigated the profiles of autoantibodies specifically targeting the deamidated epitopes of insulinoma antigen-2 extracellular domain (IA-2ec) to explore their relationship with T1D development. We compared the characteristics of autoantibodies targeting the IA-2ec Q>E epitopes (PTM IA-2ecA) as well as those targeting the IA-2ec unmodified epitopes (IA-2ecA) in participants across different stages of T1D development and in individuals with other types of diabetes and other kinds of autoimmunity.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
Type 1 Diabetes (T1D) is an autoimmune disease mediated by autoreactive T cells. Our studies indicate that CD4 T cells reactive to Hybrid Insulin Peptides (HIPs) play a critical role in T cell-mediated beta-cell destruction. We have shown that HIPs form in human islets between fragments of the C-peptide and cleavage products of secretory granule proteins.
View Article and Find Full Text PDFSci Rep
January 2025
Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
Correct classification of type 1 (T1D) and type 2 diabetes (T2D) is challenging due to overlapping clinical features and the increasingly early onset of T2D, particularly in South Asians. Polygenic risk scores (PRSs) for T1D and T2D have been shown to work relatively well in South Asians, despite being derived from largely European-ancestry samples. Here we used PRSs to investigate the rate of potential misclassification of diabetes amongst British Bangladeshis and Pakistanis.
View Article and Find Full Text PDFDiabetes Care
January 2025
Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
Objective: In the Diabetes Virus Detection and Intervention trial, antiviral treatment with pleconaril and ribavirin decreased the decline, compared with placebo, in endogenous C-peptide 1 year after diagnosis of type 1 diabetes (T1D) in children and adolescents. This article reports the results 2 and 3 years after diagnosis.
Research Design And Methods: This was a multicenter, randomized, placebo-controlled (1:1) trial of 96 children and adolescents aged 6-15.
Int J Mol Sci
December 2024
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!