Lance-Adams syndrome (LAS) is a rare neurological disorder that may occur after cardiopulmonary resuscitation. The LAS is usually caused by hypoxic changes. Neuroimaging studies show that the brain pathology of LAS patients is not uniform, and the pathophysiology of the myoclonus can vary from patient to patient. Our case study contributes to this etiological heterogeneity by neuroimaging and transcranial magnetic stimulation (TMS). In patients with rare brain conditions such as LAS, a combination of brain stimulation methods, such as TMS, and diffusion tensor imaging can provide insights into this condition's pathophysiology. These insights can facilitate the development of more effective therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879414 | PMC |
http://dx.doi.org/10.12786/bn.2021.14.e1 | DOI Listing |
Crit Care Med
November 2024
Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria.
Objectives: Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research.
Data Sources: PubMed, Embase, and Cochrane databases.
J Epilepsy Res
December 2024
Department of Neurology, Comprehensive Epilepsy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Lance Adams syndrome (LAS) is characterized by chronic action or intention myoclonus resulting from cerebral hypoxia. Perampanel, a non-competitive antagonist of aamino-3-hydroxy-5methyl-4 isooxazoleproprionic acid glutamate receptor, has demonstrated some efficacy in myoclonic epilepsy and other types of myoclonus. We report significant benefit in a patient with LAS treated with add on perampanel and provide a review of the relevant literature.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. Electronic address:
Neurology
December 2024
From the Paris Brain Institute (G.V., E.A., P.B., V.N.), ICM, Inserm, CNRS, Sorbonne University; AP-HP (G.V., V.N.), EEG Unit, Department of Neurophysiology, Pitié-Salpêtrière Hospital; AP-HP (E.A.), Neurophysiology of Movement Disorders Unit, Department of Neurophysiology, Saint-Antoine and Pitié-Salpêtrière Hospital; AP-HP (M.A.D.R.Q., V.N.), Epilepsy Unit, Department of Neurology, Reference Center of Rare Epilepsies, ERN-EpiCare, Pitié-Salpêtrière Hospital; AP-HP (D.V.C., A.K.), Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne University; Sorbonne University (A.K.), Inserm, CNRS, Laboratoire D'Imagerie Biomédicale, LIB, Paris, France.
Background And Objectives: Lance-Adams syndrome (LAS), or chronic posthypoxic myoclonus, is a long-term disabling neurologic disorder occurring in survivors of anoxia. The cortical or subcortical origin of this myoclonus is unclear. We aimed to identify the neuroanatomical origin of myoclonus in LAS.
View Article and Find Full Text PDFNeurology
December 2024
From the Department of Neurology (J.C.v.Z.), University Medical Center Groningen; and Department of Neurology (M.B.), Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!