Ulcerative colitis (UC) is one form of inflammatory bowel disease (IBD), characterized by chronic relapsing intestinal inflammation. As increasing morbidity of UC and deficiency of conventional therapies, there is an urgent need for attractive treatment. Cassane diterpenoids, the characteristic chemical constituents of genus plants, have been studied extensively owing to various and prominent biological activities. This study attempted to investigate the bioactivity of caesaldekarin e (CA), a cassane diterpenoid isolated from in our previous work, on dextran sulfate sodium (DSS)-induced experimental colitis and clarify the function mechanism. The results indicated that CA ameliorated mice colitis by relieving disease symptoms, suppressing inflammatory infiltration and maintaining intestinal barrier integrity. Furthermore, 16S rRNA gene sequencing analysis indicated that CA could improve the gut microbiota imbalance disrupted by DSS and especially restored abundance of . In addition, untargeted metabolomics analysis suggested that CA regulated metabolism and particularly the tryptophan metabolism by inhibiting the upregulation of indoleamine 2,3-dioxygenase 1 (IDO-1). It also been proved in IFN-γ induced RAW264.7 cells. Overall, this study suggests that CA exhibits anti-UC effect through restoring gut microbiota and regulating tryptophan metabolism and has the potential to be a treatment option for UC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893013PMC
http://dx.doi.org/10.3389/fimmu.2022.1045901DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
tryptophan metabolism
12
cassane diterpenoid
8
dextran sulfate
8
experimental colitis
8
diterpenoid ameliorates
4
ameliorates dextran
4
sulfate sodium-induced
4
sodium-induced experimental
4
colitis
4

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.

View Article and Find Full Text PDF

Verification of an alteration in the gut microbiota that increases nutritional risk in patients on hemodialysis.

Biosci Microbiota Food Health

July 2024

Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!