Background: Regulatory T (Treg) cells have emerged as key players in the maintenance of immune homeostasis. Although significant progress has been made in recent years to define the Treg surface markers involved with or identifying their suppressive function, there remains much to be elucidated, and many questions persist. This study determined the expression of surface markers on human peripheral Treg cells and conventional T (Tconv) cells in a steady state and after activation to gain insight into their mechanism of action and more precisely characterize this regulatory population in humans.
Methods: To screen Treg and Tconv cells, peripheral blood mononuclear cells (PBMCs) were isolated from volunteers, stained with a commercially available lyophilized antibody array comprising 371 surface antigens, and analyzed by flow cytometry. To compare Treg cells with activated Tconv cells, PBMCs were stimulated with PMA and further stained similar to freshly isolated cells.
Results: Treg and Tconv cells were positive for 135 and 168 of the 371 antigens, respectively. Based on the frequency distribution, all of the most highly expressed markers identified were shared by both Treg and Tconv cells and participate in T cell activation, act as costimulatory and signaling molecules, or exhibit adhesion and migratory functions. Additionally, we identified several differences in marker expression between Treg and Tconv cells, with most found in the expression of co-stimulatory (ICOS, GITR, 4-1BB) and co-inhibitory (TIGIT, CTLA-4) molecules, as well as chemokine receptors (CXCR4, CXCR5, CCR4, CCR5, CCR7, CCR8, and CXCR7). Furthermore, post-activation expression of surface molecules identified molecules capable of discriminating Treg cells from activated Tconv cells (GITR, 4-1BB, TIGIT, CD120b, and CD39); however, almost all of these markers were also expressed in a small fraction of activated Tconv cells.
Conclusions: These results offer insight into the biology of Tregs and contribute to their accurate identification and characterization in variety of immunological diseases as well as physiological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892051 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.1055805 | DOI Listing |
Kidney Int
January 2025
Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia. Electronic address:
Anti-glomerular basement membrane (anti-GBM) disease is accompanied by insufficient antigen-specific T regulatory cells (Tregs) and clonally expanded antigen-specific T conventional cells (Tconvs). In particular, this applied to the immunodominant T cell auto- epitope of type IV collagen, α3(IV)NC1135-145 , presented by HLA-DR15. Here, we investigated whether Tregs engineered to express GBM-T cell receptors (TCR) specific for α3(IV)NC1135- 145 better suppress autoimmunity.
View Article and Find Full Text PDFNat Commun
January 2025
Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China. Electronic address:
Purpose: To predict and evaluate the possible mechanisms and clinical value of ACTL6A in the prognosis and development of UM.
Methods: Bioinformatics analyze the relationship between ACTL6A and immunity in UM, which derived from TCGA, Gene Expression Omnibus (GEO) databases. Tumor-infltrated immune cells were demonstrated using QUANTISEQ and MCP-counter.
Front Biosci (Landmark Ed)
December 2024
Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).
View Article and Find Full Text PDFFront Immunol
December 2024
Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France.
Introduction: Immune checkpoint blockers (ICB) bring unprecedented clinical success, yet many patients endure immune mediated adverse effects and/or fail to respond. Predictive signatures of response to ICB and mechanisms of clinical efficacy or failure remain understudied. DC subsets, in network with conventional αβ T (T), NK, γδ T and iNKT cells, harbor pivotal roles in tumor control, yet their involvement in response to ICB remained underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!