Oxidative stress results in myocardial cell apoptosis and even life-threatening heart failure in myocardial ischemia-reperfusion injury. Specific blocking of the complex I could reduce cell apoptosis. Ndufs4 is a nuclear-encoded subunit of the mitochondrial complex I and participates in the electron transport chain. In this study, we designed and synthesized siRNA sequences knocking down the rat Ndufs4 gene, constructed recombinant adenovirus Ndufs4 siRNA (Ad-Ndufs4 siRNA), and primarily verified the role of Ndufs4 in oxidative stress injury. The results showed that the adenovirus infection rate was about 90%, and Ndufs4 mRNA and protein were decreased by 76.7% and 64.9%, respectively. Furthermore, the flow cytometry assay indicated that the cell apoptosis rate of the Ndufs4 siRNA group was significantly decreased as compared with the HO-treated group. In conclusion, we successfully constructed Ndufs4 siRNA recombinant adenovirus; furthermore, the downexpression of the Ndufs4 gene may alleviate HO-induced H9c2 cell apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897913PMC
http://dx.doi.org/10.1155/2023/8141129DOI Listing

Publication Analysis

Top Keywords

cell apoptosis
16
recombinant adenovirus
12
ndufs4 gene
12
oxidative stress
12
ndufs4 sirna
12
ndufs4
9
stress injury
8
sirna
6
apoptosis
5
adenovirus sirna
4

Similar Publications

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

The present study aimed to unveil the gastroprotective potential of Vaccinium macrocarpon (VM) extract and its mechanism of action against indomethacin (INDO)-induced gastric ulcers in rats. To achieve this goal, rats were pretreated with either omeprazole (20 mg/kg) or VM (100 mg/kg) orally for 14 consecutive days. Gastric tissue samples were collected and various parameters were evaluated to understand the mechanism of VM's action, including the levels of superoxide dismutase, malondialdehyde, glutathione, CAT and transforming growth factor beta (TGF-β), as well as the mRNA expression levels of tumour necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B (NF-κB) and inhibitor kappa B (IκB).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!