The Road Less Traveled: Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dihalogenated -Heteroarenes.

ACS Catal

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.

Published: October 2022

The vast majority (≥90%) of literature reports agree on the regiochemical outcomes of Pd-catalyzed cross-coupling reactions for most classes of dihalogenated -heteroarenes. Despite a well-established mechanistic rationale for typical selectivity, several examples reveal that changes to the catalyst can switch site selectivity, leading to the unconventional product. In this Perspective, we survey these unusual cases in which divergent selectivity is controlled by ligands or catalyst speciation. In some cases, the mechanistic origin of inverted selectivity has been established, but in others the mechanism remains unknown. This Perspective concludes with a discussion of remaining challenges and opportunities for the field of site-selective cross-coupling. These include developing a better understanding of oxidative addition mechanisms, understanding the role of catalyst speciation on selectivity, establishing an explanation for the influence of ring substituents on regiochemical outcome, inverting selectivity for some "stubborn" classes of substrates, and minimizing unwanted over-reaction of di- and polyhalogenated substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894105PMC
http://dx.doi.org/10.1021/acscatal.2c03743DOI Listing

Publication Analysis

Top Keywords

site selectivity
8
dihalogenated -heteroarenes
8
catalyst speciation
8
selectivity
7
road traveled
4
traveled unconventional
4
unconventional site
4
selectivity palladium-catalyzed
4
palladium-catalyzed cross-couplings
4
cross-couplings dihalogenated
4

Similar Publications

Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.

J Proteome Res

January 2025

Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.

Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.

View Article and Find Full Text PDF

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

A Hexavalent Tellurium-Based Chalcogen Bonding Catalysis Platform: High Catalytic Activity and Controlling of Selectivity.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.

Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.

View Article and Find Full Text PDF

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!