An emerging body of research by biologists and clinicians has demonstrated the clinical application of small extracellular vesicles (sEVs, also commonly referred to as exosomes) as biomarkers for cancer detections. sEVs isolated from various body fluids such as blood, saliva, urine, and cerebrospinal fluid have been used for biomarker discoveries with highly encouraging outcomes. Among the biomarkers discovered are those responsible for multiple cancer types and immune responses. These biomarkers are recapitulated from the tumor microenvironments. Yet, despite numerous discussions of sEVs in scientific literature, sEV-based biomarkers have so far played only a minor role for cancer diagnostics in the clinical setting, notably less so than other techniques such as imaging and biopsy. In this paper, we report the results of a pilot study ( = 10 from each of the patient and the control group) using bronchoalveolar lavage fluid to determine the presence of sEVs related to non-small cell lung cancer in twenty clinical samples examined using surface enhanced Raman spectroscopy (SERS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850358 | PMC |
http://dx.doi.org/10.1039/d2sd00109h | DOI Listing |
Eur J Med Res
January 2025
Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany.
Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
Background: Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8 T cells and subsequent tumor progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!