Background: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals.
Methods: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia.
Key Results: Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs.
Conclusions: Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nmo.14538 | DOI Listing |
Gastro Hep Adv
August 2024
Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.
View Article and Find Full Text PDFJ Vet Res
December 2024
Institute of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland.
Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!