A detailed theoretical mechanistic investigation on the dynamic kinetic resolution of N-protected amino acid esters using phase-transfer catalysts is described. Semiautomatic exhaustive conformation search of transition state (TS)-like structures were carried out using the ConFinder program and the pseudo-TS conformational search (PTSCS) method. This conformational search method successfully provided reasonable TS structures for determining the stereoselectivity in the asymmetric base hydrolysis of hexafluoroisopropyl (HFIP) esters as well as the racemization mechanism. Furthermore, the independent gradient model (IGM) analysis of the TS structures suggested that the H-bonding interactions with the oxyanion hole and π-stacking interactions are the common important features of the proposed TS structures that determine the stereoselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c02352 | DOI Listing |
PLoS Comput Biol
January 2025
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.
View Article and Find Full Text PDFChemSusChem
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.
2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Culturing living cells in three-dimensional environments increases the biological relevance of laboratory experiments, but requires solutes to overcome a diffusion barrier to reach the centre of cellular constructs. We present a theoretical and numerical investigation that brings a mechanistic understanding of how microfluidic culture conditions, including chamber size, inlet fluid velocity and spatial confinement, affect solute distribution within three-dimensional cellular constructs. Contact with the chamber substrate reduces the maximally achievable construct radius by 15%.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!