In recent years, efficient oil-water separation has gradually become an indispensable part of environmental treatment. Superhydrophobic/superoleophilic materials with excellent self-cleaning performance are urgently required and remain challenging in the investigation of practical, rapid, and efficient separation of oil-water mixture and emulsion, especially those with robust surfaces that can be used in harsh conditions. In this work, a novel superhydrophobic/superoleophilic material was first fabricated by in situ constructing PDMS@ZIF-7/Cu(PO) hierarchical architectures on a copper mesh, which was adopted as a high flux and efficient separation material for gravity-driven separation of oil-water mixture as well as emulsion. The introduction of crucial Cu(PO) nanosheet interlayers created the ideal hierarchical structures and serve as partial templates for the subsequent in situ growth of hydrophobic ZIF-7 nanosheets. An improved superhydrophobicity (CA = 155°), permeation flux (102,000 L m h), and preferred self-cleaning property were thus achieved by such manipulation of the copper mesh. The PDMS@ZIF-7/Cu(PO) mesh exhibited exceptional separation efficiency for diverse oil-water mixtures and emulsions attributed to the superhydrophobicity and the demulsification ability and considerable stability to cope with extreme environments including sunlight resistance, low temperature, and corrosion resistance, which prompted its promising applicability in cleaning emulsified wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c04322DOI Listing

Publication Analysis

Top Keywords

oil-water mixture
12
pdms@zif-7/cupo mesh
8
self-cleaning property
8
mixture emulsion
8
efficient separation
8
separation oil-water
8
copper mesh
8
separation
6
oil-water
5
rational design
4

Similar Publications

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

The treatment of oily wastewater and oil/water mixtures has received more and more attention. In this study, a Zn-MOF (ZIF-8) decorated polyimide (PI) nanofiber membrane with triple self-cleaning performance was constructed, and the decoration of ZIF-8 on the PI membrane improved the hydrophilicity of the composite membrane, which further enhanced the underwater oil resistance, and the mechanical properties of the membranes improved significantly with the increase of in situ growth time. In addition, the inherent photocatalytic and antibacterial properties of ZIF-8 endowed the membranes with fantastic performance.

View Article and Find Full Text PDF

Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.

View Article and Find Full Text PDF

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

Chemical EOR Formulation for a Clay-Rich Sandstone Reservoir with Reduced Surfactant Consumption.

ACS Omega

January 2025

Hildebrand Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 200 E Dean Keeton, Austin, Texas 78712, United States.

Alkali-surfactant-polymer (ASP) flooding can reduce oil-water interfacial tension to ultralow values and mobilize oil in petroleum reservoirs. Surfactant is consumed by adsorption/retention which is significant in clay-rich reservoirs. Alkali can be added to surfactant-polymer formulations to minimize surfactant adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!