Background: Buyang Huanwu Decoction (BHD) is used to regulate blood circulation and clear collaterals and is widely used in coronary heart disease. However, the active compounds and the mechanism of BHD used to treat restenosis are less understood.
Objective: The study aimed to explore the potential mechanism of Buyang Huanwu decoction BHD for the treatment of restenosis using network pharmacology and molecular docking experiments.
Methods: The bioactive components of BHD and their corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopaedia of Traditional Chinese Medicine (ETCM) databases as well as literature. Restenosisassociated therapeutic genes were identified from the OMIM, Drugbank, GEO, and Dis- GeNET databases. Genes related to the vascular smooth muscle cell (VSMC) phenotype were obtained from the gene ontology (GO) database and literature. The core target genes for the drug-disease-VSMC phenotype were identified using the Venn tool and Cytoscape software. Moreover, the "drug-component-target-pathway" network was constructed and analyzed, and pathway enrichment analysis was performed. The connection between the main active components and core targets was analyzed using the AutoDock tool, and PyMOL was used to visualize the results.
Results: The "compound-target-disease" network included 80 active ingredients and 599 overlapping targets. Among the bioactive components, quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin had high degree values, and the core targets included TP53, MYC, APP, UBC, JUN, EP300, TGFB1, UBB, SP1, MAPK1, SMAD2, CTNNB1, FOXO3, PIN1, EGR1, TCF4, FOS, SMAD3, and CREBBP. A total of 365 items were obtained from the GO functional enrichment analysis (p < 0.05), whereas the enrichment analysis of the KEGG pathway identified 30 signaling pathways (p < 0.05), which involved the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, TLR7/8 cascade, and others. The molecular docking results revealed quercetin, luteolin, and ligustilide to have good affinity with the core targets MYC and TP53.
Conclusion: The active ingredients in BHD might act on TP53, MYC, APP, UBC, JUN, and other targets through its active components (such as quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin). This action of BHD may be transmitted via the involvement of multiple signaling pathways, including the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, and TLR7/8 cascade, to treat restenosis by inhibiting the phenotype switching and proliferation of VSMC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573409919666230203144207 | DOI Listing |
Phytother Res
January 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management.
View Article and Find Full Text PDFFood Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!