Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The relationship between oscillatory activity in hippocampus and cognitive impairment in traumatic brain injury (TBI) remains unclear. Although TBI decreases gamma oscillations and 40 Hz light flicker improves TBI prognosis, the effects and mechanism of rhythmic flicker on TBI remain unclear.
Aims: In this study, we aimed to explore whether light flicker could reverse cognitive deficits, and further explore its potential mechanisms in TBI mouse model.
Methods: The Morris water maze test (MWM), step-down test (SDT), and novel object recognition test (NOR) were applied to evaluate the cognitive ability. The local field potential (LFP) recording was applied to measure low gamma reduction of CA1 in hippocampus after TBI. And electrophysiological experiments were applied to explore effects of the gamma frequency entrainment on long-term potentiation (LTP), postsynaptic transmission, and intrinsic excitability of CA1 pyramidal cells (PCs) in TBI mice. Immunofluorescence staining and western blotting were applied to explore the effects of 40 Hz light flicker on the expression of PSD95 in hippocampus of TBI mice.
Results: We found that 40 Hz light flicker restored low gamma reduction of CA1 in hippocampus after TBI. And 40 Hz, but not random or 80 Hz light flicker, reversed cognitive impairment after TBI in behavioral tests. Moreover, 40 Hz light flicker improved N-methyl-D-aspartate (NMDA) receptor-dependent LTP (LTP ) and L-type voltage-gated calcium channel-dependent LTP (LTP ) after TBI treatment. And gamma frequency entrainment decreased excitatory postsynaptic currents (EPSCs) of CA1 PCs in TBI mice. Our results have illustrated that 40 Hz light flicker could decrease intrinsic excitability of PCs after TBI treatment in mice. Furthermore, 40 Hz light flicker decreased the expression of PSD95 in hippocampus of TBI mice.
Conclusion: These results demonstrated that 40 Hz light flicker rescues cognitive impairment by decreasing postsynaptic transmission in PCs after TBI treatment in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018095 | PMC |
http://dx.doi.org/10.1111/cns.14096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!