AI Article Synopsis

  • - The study focuses on silk fibroin (SF) as a material for microneedle (MN) patches designed to deliver stromal cell-derived factor-1 (SDF-1) to recruit adipose stem cells (ASCs) due to its good biocompatibility and mechanical properties.
  • - SF-based MN patches were successfully created using 3M™ templates and showed the ability to penetrate the skin up to 400 μm and provide a sustained release of SDF-1 and a model drug, dextran.
  • - Dual-layer MNs, with a gelatin tip and SF body, were developed to enhance the regulated release of SDF-1, suggesting potential applications in stem cell therapy.

Article Abstract

Silk fibroin (SF) has good biocompatibility, degradability and mechanical properties. In this study, SF-based microneedle (MN) patches were fabricated as stromal cell-derived factor-1 (SDF-1) carriers that may be used for adipose stem cell (ASC) recruitment. Therefore, SF was chosen as the main MN material to achieve sustained drug release. In addition, the variations in SF-based MN crystallinity after water annealing treatment were also determined. The results indicated that SF-based MN patches were successfully fabricated with a 3M™ commercial template and Polydimethylsiloxane mold. Through optical coherence tomography, it was found that all of the SF-based MN patches prepared in this study had sufficient strength to penetrate the skin to a depth of approximately 400 μm. Sustained release of the model drug-dextran from the SF-based MNs was demonstrated. Although SF-based MNs release SDF-1 in a sustained manner, the quantity released can be regulated and improved. Subsequently, dual-layer SDF-1-loaded MNs fabricated with a gelatin tip and SF body were prepared to enhance SDF-1 release for ASC recruitment. SF-based MNs can show good penetration ability and provide good sustained release while dual-layer MNs can regulate the amount of drug released, which could present an alternative for stem cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123537DOI Listing

Publication Analysis

Top Keywords

stem cell
12
sf-based mns
12
stromal cell-derived
8
adipose stem
8
patches fabricated
8
asc recruitment
8
sf-based patches
8
sustained release
8
sf-based
7
release
5

Similar Publications

Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides.

View Article and Find Full Text PDF

Mll4 in skeletal muscle fibers maintains muscle stem cells.

Skelet Muscle

December 2024

School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Background: Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle.

View Article and Find Full Text PDF

Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance.

View Article and Find Full Text PDF

Acute graft-versus-host disease (aGVHD) significantly affects quality of life and outcomes in patients post-haploidentical haematopoietic stem cell transplantation (haplo-HSCT). Methotrexate (MTX) is commonly used to prevent aGVHD but can lead to complications like delayed haematological recovery and oral mucositis (OM). This study investigates the efficacy of anti-CD25 monoclonal antibody (mAb) as a potential MTX alternative.

View Article and Find Full Text PDF

An AP2/ERF transcription factor GhERF109 negatively regulates plant growth and development in cotton.

Plant Sci

December 2024

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:

Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!