The study's primary goal was to enhance medicinal potential of piperine (PIP)-loaded zeolitic imidazolate frameworks-8 (PIP@ZIF-8) against doxorubicin (DOX)-induced cognitive impairments in zebrafish. Herein, PIP@ZIF-8 was synthesized via easy, economical and reproducible ultrasonication method followed by spray drying technology. ZIF-8's structural integrity has been confirmed by PXRD, and even after PIP was encapsulated, the structure of ZIF-8 remained unchanged. Pure ZIF-8 and PIP@ZIF-8 were subjected to TEM analysis, which revealed hexagonal morphology with a nanosize range. FTIR and UV-Visible spectroscopy studies confirmed the drug loading of ZIF-8. Studies on in vitro release revealed 71.48 ± 7.21% and 34.56 ± 5.35% PIP release from PIP@ZIF-8 and unformulated PIP, respectively in pH 7.4. The highest antioxidant scavenging results were obtained with vitamin C (73.77 ± 6.7%) at an intensity of 200 μg/ml, though it was 65.09 ± 2.5% and 57.99 ± 3.1% for PIP@ZIF-8 and PIP, respectively. In vivo studies on zebrafish showed that DOX administration remarkably impaired cognitive activity in T-Maze, and downregulated spatial memory and locomotor activity in the open field test. In addition, DOX administration caused a downregulation in GSH and SOD levels and increase in LPO, AChE and TNF-α levels compared to the vehicle group along with changes in brain histopathology. Further, PIP@ZIF-8 reversed the DOX-induced cognitive impairments by its antioxidant and neuroprotective properties. It can be concluded that PIP@ZIF-8 has a promising therapeutic potential against the chemotherapy-induced cognitive impairments in zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.01.077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!